Functional quantile autoregression

被引:1
|
作者
Dong, Chaohua [1 ]
Chen, Rong [2 ]
Xiao, Zhijie [3 ]
Liu, Weiyi [4 ]
机构
[1] Zhongnan Univ Econ & Law, Wuhan, Peoples R China
[2] Rutgers State Univ, New Brunswick, NJ USA
[3] Boston Coll, Chestnut Hill, MA USA
[4] Capital Univ Econ & Business, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Distributional dynamics; Functional dependence; GARCH; Quantile autoregression; Sieve estimation; REGRESSION; MODELS; ESTIMATORS; SERIES; DEPENDENCE; RISK;
D O I
10.1016/j.jeconom.2024.105765
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes a new class of time series models, the functional quantile autoregression (FQAR) models, in which the conditional distribution of the observation at the current time point is affected by its past distributional information, and is expressed as a functional of the past conditional quantile functions. Different from the conventional functional time series models which are based on functionally observed data, the proposed FQAR method studies functional dynamics in traditional time series data. We propose a sieve estimator for the model. Asymptotic properties of the estimators are derived. Numerical investigations are conducted to highlight the proposed method.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Quantile autoregression
    Koenker, Roger
    Xiao, Zhijie
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (475) : 980 - 990
  • [2] QUANTILE DOUBLE AUTOREGRESSION
    Zhu, Qianqian
    Li, Guodong
    ECONOMETRIC THEORY, 2022, 38 (04) : 793 - 839
  • [3] Network quantile autoregression
    Zhu, Xuening
    Wang, Weining
    Wang, Hansheng
    Haerdle, Wolfgang Karl
    JOURNAL OF ECONOMETRICS, 2019, 212 (01) : 345 - 358
  • [4] Bayesian joint quantile autoregression
    Jorge Castillo-Mateo
    Alan E. Gelfand
    Jesús Asín
    Ana C. Cebrián
    Jesús Abaurrea
    TEST, 2024, 33 : 335 - 357
  • [5] Quantile Autoregression for Censored Data
    Choi, Seokwoo Jake
    Portnoy, Stephen
    JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (05) : 603 - 623
  • [6] Bayesian joint quantile autoregression
    Castillo-Mateo, Jorge
    Gelfand, Alan E.
    Asin, Jesus
    Cebrian, Ana C.
    Abaurrea, Jesus
    TEST, 2024, 33 (01) : 335 - 357
  • [7] Markov switching quantile autoregression
    Liu, Xiaochun
    STATISTICA NEERLANDICA, 2016, 70 (04) : 356 - 395
  • [8] The asymptotic behaviors for autoregression quantile estimates
    Li, Xin
    Mao, Mingzhi
    Huang, Gang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (15) : 5486 - 5506
  • [9] Unit root quantile autoregression inference
    Koenker, R
    Xiao, Z
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) : 775 - 787
  • [10] Forecasting and stress testing with quantile vector autoregression
    Chavleishvili, Sulkhan
    Manganelli, Simone
    JOURNAL OF APPLIED ECONOMETRICS, 2024, 39 (01) : 66 - 85