Construction of Zero Correlation Zone Gaussian Integer Sequence Sets Based on Difference Sets

被引:2
|
作者
Liu T. [1 ]
Xu C. [1 ]
Li Y. [1 ]
机构
[1] School of Information Science & Engineering, Yanshan University, Qinhuangdao
基金
中国国家自然科学基金;
关键词
Difference set; Gaussian integer sequence; Shift sequence; Zero Correlation Zone (ZCZ);
D O I
10.11999/JEIT161177
中图分类号
学科分类号
摘要
A unified construction of Guassian integer sequence sets with Zero Correlation Zone (ZCZ) is presented. Based on difference sets, optimal or almost optimal ZCZ Gaussian integer sequence sets are constructed using shift sequences, whose ZCZ length and alphabets can be flexibly chosen. Since the study of difference sets has achieved abundant accomplishment, then the presented method will produce an abundance of ZCZ Gaussian integer sequence sets for CDMA systems. © 2017, Science Press. All right reserved.
引用
收藏
页码:2277 / 2281
页数:4
相关论文
共 18 条
  • [1] Wang S., Li C., Novel MC-CDMA system using Fourier duals of sparse perfect Gaussian integer sequences, 2016 IEEE International Conference on Communications, pp. 1-6, (2016)
  • [2] Fan P., Darnell M., Maximual length sequences over Gaussian integers, Electronics Letters, 30, 16, pp. 1286-1287, (1994)
  • [3] Hu W., Wang S., Li C., Gaussian integer sequences with ideal periodic autocorrelation functions, IEEE Transactions on Signal Processing, 60, 11, pp. 6074-6079, (2012)
  • [4] Chen X., Li C., Rong C., Perfect Gaussian integer sequences from cyclic difference sets, 2016 IEEE International Symposium on Information Theory, pp. 115-119, (2016)
  • [5] Lee C., Li C., Chang H., Et al., Further results on degree-2 perfect Gaussian integer sequences, IET Communications, 10, 12, pp. 1542-1552, (2016)
  • [6] Yang Y., Tang X., Zhou Z., Perfect Gaussian integer sequences of odd prime length, IEEE Signal Processing Letters, 19, 10, pp. 615-618, (2012)
  • [7] Lee C., Huang Y., Chang Y., Et al., Perfect Gaussian integer sequences of odd period 2<sup>m</sup>-1, IEEE Signal Processing Letters, 22, 7, pp. 881-885, (2015)
  • [8] Pei S., Chang K., Perfect Gaussian integer sequences of arbitrary length, IEEE Signal Processing Letters, 22, 8, pp. 1040-1044, (2015)
  • [9] Chang H., Li C., Lee C., Et al., Perfect Gaussian integer sequences of arbitrary composite length, IEEE Transactions on Information Theory, 61, 7, pp. 4107-4115, (2015)
  • [10] Chen X., Xu C., Li Y., New constructions of perfect Gaussian integer sequences, Journal of Electronics & Information Technology, 36, 9, pp. 2081-2085, (2014)