Properties of strong-coupling bipolaron qubit in parabolic potential quantum dot

被引:0
|
作者
Eerdunchaolu [1 ]
Han C. [1 ]
Zhang Y. [1 ]
机构
[1] Department of Physics, Hebei Normal University of Science & Technology, Qinhuangdao
来源
Eerdunchaolu (eerdunchaolu@163.com) | 1600年 / Editorial Office of Chinese Optics卷 / 37期
关键词
Bipolaron; Lee-Low-Pines-Pekar variational method; Quantum dot; Qubit;
D O I
10.3788/fgxb20163702.0144
中图分类号
学科分类号
摘要
On the basis of Lee-Low-Pines (LLP) unitary transformation, the eigenenergy and eigenfunction of the ground-state and the first excited state of the strong-coupling bipolaron in two-dimensional quantum dot (QD) were obtained by using the variational method of Pekar type. A qubit was formed by overlaying both the ground state and the first excited state of the bipolaron system. Numerical calculations indicate that the oscillating period T0 of qubits decreases with the increasing the electron-phonon coupling strength α, the confinement strength ω0 of the quantum dot, and the dielectric constant ratio η; the distribution of the probability density Q of the electrons in quantum dot oscillates periodically with time t, angle coordinate φ2, and the dielectric constant ratio η, and there is a maximum at near the center and zero away from the center of quantum dot. © 2016, Science Press. All right reserved.
引用
收藏
页码:144 / 150
页数:6
相关论文
共 18 条
  • [1] Cirac J.I., Zoller P., Quantum computations with cold trapped ions, Phys. Rev. Lett., 74, 20, pp. 4091-4094, (1995)
  • [2] Gershenfeld N.A., Chuang I.L., Bulk spin-resonance quantum computation, Science, 275, 5298, pp. 350-356, (1997)
  • [3] Kane B.E., A silicon-based nuclear spin quantum computer, Nature, 393, 6681, pp. 133-137, (1998)
  • [4] Loss D., Divincenzo D.P., Quantum computation with quantum dots, Phys. Rev. A, 57, 1, pp. 120-126, (1998)
  • [5] Kyriakidis J., Penney S.J., Coherent rotations of a single spin-based qubit in a single quantum dot at fixed Zeeman energy, Phys. Rev. B, 71, 12, (2005)
  • [6] Furuta S., Barnes C.H.W., Doran C.J.L., Single-qubit gates and measurements in the surface acoustic wave quantum computer, Phys. Rev. B, 70, 20, (2004)
  • [7] Li S.S., Long G.L., Bai F.S., Et al., Quantum computing, Proc. Nat. Acad. Sci. USA, 98, 21, pp. 11847-11848, (2001)
  • [8] Li S.S., Xia J.B., Liu J.L., Et al., InAs/GaAs single-electron quantum dot qubit, J. Appl. Phys., 90, 12, pp. 6151-6155, (2001)
  • [9] Yu Y.F., Li W.P., Yin J.W., Et al., The decoherence of single electron quantum dot qubit, Int. J. Theor. Phys., 50, 11, pp. 3322-3328, (2011)
  • [10] Xiao J.L., The effect of electric field on an asymmetric quantum dot qubit, Quant. Inf. Proc., 12, 12, pp. 3707-3716, (2013)