Adaptive polynomial approximation by means of random discrete least squares

被引:0
|
作者
Migliorati, Giovanni [1 ]
机构
[1] MATHICSE-CSQI, École Polytechnique Fédérale de Lausanne, Lausanne,CH,1015, Switzerland
关键词
Adaptive Approximation - Adaptive least squares - Discrete least squares method - Greedy selections - Multivariate function - Multivariate polynomial approximation - Numerical results - Probability densities;
D O I
10.1007/978-3-319-10705-9_54
中图分类号
学科分类号
摘要
引用
收藏
页码:547 / 554
相关论文
共 50 条
  • [1] DISCRETE LEAST SQUARES POLYNOMIAL APPROXIMATION WITH RANDOM EVALUATIONS - APPLICATION TO PARAMETRIC AND STOCHASTIC ELLIPTIC PDES
    Chkifa, Abdellah
    Cohen, Albert
    Migliorati, Giovanni
    Nobile, Fabio
    Tempone, Raul
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (03): : 815 - 837
  • [2] Solving Toeplitz least squares problems via discrete polynomial least squares approximation at roots of unity
    Van Barel, M
    Heinig, G
    Kravanja, P
    [J]. ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS X, 2000, 4116 : 167 - 172
  • [3] On discrete polynomial least-squares approximation in moving time windows
    Fuchs, E
    [J]. APPLICATIONS AND COMPUTATION OF ORTHOGONAL POLYNOMIALS, 1999, 131 : 93 - 107
  • [4] Polynomial approximation by the method of least squares
    Davis, HT
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1933, 4 : 155 - 215
  • [5] CONDITIONAL LEAST SQUARES POLYNOMIAL APPROXIMATION
    KLOPFENSTEIN, RW
    [J]. MATHEMATICS OF COMPUTATION, 1964, 18 (88) : 659 - &
  • [6] The sensitivity of least squares polynomial approximation
    Beckermann, B
    Saff, EB
    [J]. APPLICATIONS AND COMPUTATION OF ORTHOGONAL POLYNOMIALS, 1999, 131 : 1 - 19
  • [7] Weighted discrete least-squares polynomial approximation using randomized quadratures
    Zhou, Tao
    Narayan, Akil
    Xiu, Dongbin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 787 - 800
  • [8] ON POLYNOMIAL-APPROXIMATION IN THE UNIFORM NORM BY THE DISCRETE LEAST-SQUARES METHOD
    REICHEL, L
    [J]. BIT, 1986, 26 (03): : 349 - 368
  • [9] ON DISCRETE RATIONAL LEAST SQUARES APPROXIMATION
    POMENTALE, T
    [J]. NUMERISCHE MATHEMATIK, 1968, 12 (01) : 40 - +
  • [10] An interpolatory view of polynomial least squares approximation
    Chang, Qingjun
    Deng, Chongyang
    Floater, Michael S.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2020, 252