Integrating deep learning neural network and M5P with conventional statistical models for landslide susceptibility modelling

被引:0
|
作者
Department of Geography, University of Gour Banga, West Bengal, Malda [1 ]
732103, India
不详 [2 ]
不详 [3 ]
SA, Australia
不详 [4 ]
不详 [5 ]
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 27 条
  • [1] Integrating deep learning neural network and M5P with conventional statistical models for landslide susceptibility modelling
    Sunil Saha
    Anik Saha
    M. Santosh
    Barnali Kundu
    Raju Sarkar
    Tusar Kanti Hembram
    [J]. Bulletin of Engineering Geology and the Environment, 2024, 83
  • [2] Integrating deep learning neural network and M5P with conventional statistical models for landslide susceptibility modelling
    Saha, Sunil
    Saha, Anik
    Santosh, M.
    Kundu, Barnali
    Sarkar, Raju
    Hembram, Tusar Kanti
    [J]. BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2024, 83 (01)
  • [3] Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment
    Dieu Tien Bui
    Tsangaratos, Paraskevas
    Viet-Tien Nguyen
    Ngo Van Liem
    Phan Trong Trinh
    [J]. CATENA, 2020, 188
  • [4] A spatially explicit deep learning neural network model for the prediction of landslide susceptibility
    Dong Van Dao
    Jaafari, Abolfazl
    Bayat, Mahmoud
    Mafi-Gholami, Davood
    Qi, Chongchong
    Moayedi, Hossein
    Tran Van Phong
    Hai-Bang Ly
    Tien-Thinh Le
    Phan Trong Trinh
    Chinh Luu
    Nguyen Kim Quoc
    Bui Nhi Thanh
    Binh Thai Pham
    [J]. CATENA, 2020, 188
  • [5] Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping
    Fang, Zhice
    Wang, Yi
    Peng, Ling
    Hong, Haoyuan
    [J]. COMPUTERS & GEOSCIENCES, 2020, 139
  • [6] Comparative Study of Convolutional Neural Network and Conventional Machine Learning Methods for Landslide Susceptibility Mapping
    Liu, Rui
    Yang, Xin
    Xu, Chong
    Wei, Liangshuai
    Zeng, Xiangqiang
    [J]. REMOTE SENSING, 2022, 14 (02)
  • [7] Forecasting of SPI and Meteorological Drought Based on the Artificial Neural Network and M5P Model Tree
    Pande, Chaitanya B.
    Al-Ansari, Nadhir
    Kushwaha, N. L.
    Srivastava, Aman
    Noor, Rabeea
    Kumar, Manish
    Moharir, Kanak N.
    Elbeltagi, Ahmed
    [J]. LAND, 2022, 11 (11)
  • [8] A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction
    Huang, Faming
    Zhang, Jing
    Zhou, Chuangbing
    Wang, Yuhao
    Huang, Jinsong
    Zhu, Li
    [J]. LANDSLIDES, 2020, 17 (01) : 217 - 229
  • [9] A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction
    Faming Huang
    Jing Zhang
    Chuangbing Zhou
    Yuhao Wang
    Jinsong Huang
    Li Zhu
    [J]. Landslides, 2020, 17 : 217 - 229
  • [10] Novel Ensembles of Deep Learning Neural Network and Statistical Learning for Flash-Flood Susceptibility Mapping
    Costache, Romulus
    Phuong Thao Thi Ngo
    Dieu Tien Bui
    [J]. WATER, 2020, 12 (06)