Arabic handwritten alphanumeric character recognition using very deep neural network

被引:29
|
作者
Mudhsh M. [1 ]
Almodfer R. [1 ]
机构
[1] School of Computer Science, Wuhan University of Technology, Luo Shi Road, Wuhan
来源
Almodfer, Rolla (rollajamil@whut.edu.cn) | 1600年 / MDPI AG卷 / 08期
关键词
Alphanumeric recognition; Arabic handwritten; Augmentation; Deep learning; Dropout; VGGNet;
D O I
10.3390/info8030105
中图分类号
学科分类号
摘要
The traditional algorithms for recognizing handwritten alphanumeric characters are dependent on hand-designed features. In recent days, deep learning techniques have brought about new breakthrough technology for pattern recognition applications, especially for handwritten recognition. However, deeper networks are needed to deliver state-of-the-art results in this area. In this paper, inspired by the success of the very deep state-of-the-art VGGNet, we propose Alphanumeric VGG net for Arabic handwritten alphanumeric character recognition. Alphanumeric VGG net is constructed by thirteen convolutional layers, two max-pooling layers, and three fully-connected layers. The proposed model is fast and reliable, which improves the classification performance. Besides, this model has also reduced the overall complexity of VGGNet. We evaluated our approach on two benchmarking databases. We have achieved very promising results, with a validation accuracy of 99.66% for the ADBase database and 97.32% for the HACDB database. © 2017 by the authors.
引用
收藏
相关论文
共 50 条
  • [1] Optical Character Recognition of Arabic Handwritten Characters using Neural Network
    Hussien, Rana S.
    Elkhidir, Azza A.
    Elnourani, Mohamed G.
    2015 INTERNATIONAL CONFERENCE ON COMPUTING, CONTROL, NETWORKING, ELECTRONICS AND EMBEDDED SYSTEMS ENGINEERING (ICCNEEE), 2015, : 456 - 461
  • [2] OIAHCR: Online Isolated Arabic Handwritten Character Recognition Using Neural Network
    Alijla, Basem
    Kwaik, Kathrein
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2012, 9 (04) : 343 - 351
  • [3] Supervised feedforward fuzzy artificial neural network for handwritten alphanumeric character recognition
    Annadurai, S
    Balasubramaniam, A
    ELECTRONICS LETTERS, 1996, 32 (21) : 1987 - 1989
  • [4] Bengali Handwritten Character Recognition Using Deep Convolutional Neural Network
    Purkaystha, Bishwajit
    Datta, Tapos
    Islam, Md Saiful
    2017 20TH INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2017,
  • [5] Hindi Handwritten Character Recognition using Deep Convolution Neural Network
    Chaudhary, Deepak
    Sharma, Kaushal
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2019, : 961 - 965
  • [6] Very Deep Neural Network for Handwritten Digit Recognition
    Li, Yang
    Li, Hang
    Xu, Yulong
    Wang, Jiabao
    Zhang, Yafei
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2016, 2016, 9937 : 174 - 182
  • [7] Off Line Arabic Handwritten Character Using Neural Network
    Shamsan, Ehab A.
    Khalifa, Othman O.
    Hassan, Aisha
    Hamdan, H. G. Muhammad
    2017 IEEE 4TH INTERNATIONAL CONFERENCE ON SMART INSTRUMENTATION, MEASUREMENT AND APPLICATION (ICSIMA 2017), 2017,
  • [8] UrduDeepNet: offline handwritten Urdu character recognition using deep neural network
    Mushtaq, Faisel
    Misgar, Muzafar Mehraj
    Kumar, Munish
    Khurana, Surinder Singh
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (22): : 15229 - 15252
  • [9] UrduDeepNet: offline handwritten Urdu character recognition using deep neural network
    Faisel Mushtaq
    Muzafar Mehraj Misgar
    Munish Kumar
    Surinder Singh Khurana
    Neural Computing and Applications, 2021, 33 : 15229 - 15252
  • [10] Bangla Handwritten Basic Character Recognition Using Deep Convolutional Neural Network
    Saha, Chandrika
    Faisal, Rahat Hossain
    Rahman, Md Mostafijur
    2019 JOINT 8TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR) WITH INTERNATIONAL CONFERENCE ON ACTIVITY AND BEHAVIOR COMPUTING (ABC), 2019, : 190 - 195