Design of True Random Number Generator Based on VCO

被引:0
|
作者
Wang P.-J. [1 ,2 ]
Li Z. [1 ]
Li G. [2 ]
Cheng X. [3 ]
Zhang H.-H. [1 ]
机构
[1] Faculty of Electronic Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang
[2] College of Mathematics, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, 325035, Zhejiang
[3] State Key Laboratory of ASIC and System, Fudan University, Shanghai
来源
关键词
Thermal noise; Trade off; True random number generator(TRNG); Voltage-controlled oscillator(VCO);
D O I
10.3969/j.issn.0372-2112.2019.02.022
中图分类号
学科分类号
摘要
After studies on the frequency jitter mechanism, a design of true random number generator(TRNG)based on voltage-controlled oscillator(VCO)is proposed. The scheme amplified the thermal noise of resistance and took it as the control signal of VCO. Its oscillation frequency thus randomly jittered around the centre frequency. The slow oscillating signal generated by the VCO generated an raw random sequence by sampling the period-fixed fast oscillating signal, then used the post-processing circuit to improve the uniformity of sequence and to eliminate the autocorrelation. Applying the thermal noise generator to adjust the centre frequency of VCO is able to trade off the bit rate of sequence and the randomness. The proposed circuit is designed in SMIC 55nm CMOS technology with a chip area of 0.0124mm2, a bit rate of 10Mbps and an average power of 0.81mW. The output of randomly sequence passed the NIST SP 800-22 randomness test. © 2019, Chinese Institute of Electronics. All right reserved.
引用
收藏
页码:417 / 421
页数:4
相关论文
共 10 条
  • [1] Liu Y., Cheung R.C.C., Wong H., A bias-bounded digital true random number generator architecture, IEEE Transactions on Circuits & Systems I Regular Papers, 64, 1, pp. 133-144, (2017)
  • [2] Wieczorek P.Z., Lightweight TRNG based on multiphase timing of bistables, IEEE Transactions on Circuits & Systems I Regular Papers, 63, 7, pp. 1043-1054, (2016)
  • [3] Srinivasan S., Mathew S., Erraguntla V., Et al., A 4Gbps 0.57pJ/bit process-voltage-temperature variation tolerant all-digital true random number generator in 45nm CMOS, International Conference on VLSI Design, pp. 301-306, (2009)
  • [4] Mathew S.K., Srinivasan S., Anders M.A., Et al., 2.4 Gbps, 7 mW all-digital PVT-variation tolerant true random number generator for 45nm CMOS high-performance microprocessors, IEEE Journal of Solid-State Circuits, 47, 11, pp. 2807-2821, (2012)
  • [5] Brederlow R., Prakash R., Paulus C., Et al., A low-power true random number generator using random telegraph noise of single oxide-traps, International Solid State Circuits Conference-Digest of Technical Papers, pp. 1666-1675, (2006)
  • [6] Deng H., Jin R., Chen J., Et al., Oscillator-based high performance truly random number generator, Research & Progress of SSE Solid State Electronics, 27, 3, pp. 391-396, (2007)
  • [7] Jun B., Kocher P., The Intel random number generator, (1999)
  • [8] Mathew S., Johnston D., Newman P., Et al., μRNG: A 300μ950mV 323Gbps/W all-digital full-entropy true random number generator in 14nm FinFET CMOS, European Solid-State Circuits Conference, pp. 1-10, (2015)
  • [9] Tong C., Lang W., Wan P., Chang Y., Jin Y., Lin P., Research and design of a true random number generator for smart cards, Science & Technology Information, 5, pp. 100-101, (2013)
  • [10] Wei Z., Fu L., Wang X., He Y., Jin X., Tan L., Hu Y., Tang X., Zhang H., Zhao D., A high speed truly random number generator based on thermal noise oscillator, Application of Electronic Technique, 44, 10, (2018)