To study the seismic response of isolated structure under different reserved slippage, mild steel cone rod was taken as limit and energy dissipation device, Stateflow logic diagram was applied to simulate the motion state of isolation layer, and Bouc-Wen model was used to describe the hysteretic characteristic of elastic-plastic bar limit. MATLAB/Simulink simulation model of friction sliding isolation frame structure was established, the dynamic and energy response was analyzed, and the dynamic response of pure friction structure was compared with the shaking table test. Results show that the simulation results are consistent with experimental results. With the increase of reserved slippage, the acceleration response of the upper structure is not significantly increased. But isolation layer slippage is increased and limit device deformation is decreased. Damping energy dissipation has little to do with reserved slippage. The slippage change mainly changes earthquake input energy, which has less influence to other energy index. © 2016, Editorial Board of Journal of Harbin Institute of Technology. All right reserved.