A Study on the Application of Deep Learning Models for Real-time Defect Detection in the Manufacturing Process - Cases of Defect detection in the Label Printing Process -

被引:0
|
作者
Son J.H. [1 ]
Kim C.O. [2 ]
机构
[1] Department of Convergence Technology & Management Engineering, Yonsei University
[2] Department of Industrial Engineering, College of Engineering, Yonsei University
关键词
Computer Vision; Deep learning; Object detection; One class convolutional neural network; Semi supervised learning;
D O I
10.7584/JKTAPPI.2021.10.53.5.74
中图分类号
学科分类号
摘要
The global smart manufacturing market is growing rapidly as developed countries (Germany, USA, Japan) as well as late comers such as China are now recognizing the importance of “smart manufacturing” and promoting active policies to foster related ecosystems. Policies to revitalize manufacturing through the convergence of cutting-edge ICT and manufacturing technology are already in progress. Some such policies include Industry 4.0, the Advanced Manufacturing Partnership of the United States, Japan’s Industrial Revitalization Plan, and China’s Made in China 2025. As a result of the gradual shift from product standardization to product customization, the importance of machine vision in manufacturing has also been increasing. However, it is difficult to develop a standard machine vision method because there are different specifications for meeting the individual demands of different manufacturing industries. Moreover, it is difficult to apply such a standard machine vision method to artificial intelligence because defective data for learning in the manufacturing industry are not frequently generated and stored. Therefore, it is conducted manually or visually inspected by workers. This study applies the primary feature of matching models for a label printing process to efficiently detect defects with high performance and applies a deep learning model to maximize performance. Our proposed method achieved an accuracy of 97% with a feature matching model and 99.8% accuracy with the deep learning model. © 2021 Korean Technical Assoc. of the Pulp and Paper Industry. All rights reserved.
引用
收藏
页码:74 / 81
页数:7
相关论文
共 50 条
  • [1] A Real-Time Automated Defect Detection System for Ceramic Pieces Manufacturing Process Based on Computer Vision with Deep Learning
    Cumbajin, Esteban
    Rodrigues, Nuno
    Costa, Paulo
    Miragaia, Rolando
    Frazao, Luis
    Costa, Nuno
    Fernandez-Caballero, Antonio
    Carneiro, Jorge
    Buruberri, Leire H.
    Pereira, Antonio
    SENSORS, 2024, 24 (01)
  • [2] Real-Time Tiny Part Defect Detection System in Manufacturing Using Deep Learning
    Yang, Jing
    Li, Shaobo
    Wang, Zheng
    Yang, Guanci
    IEEE ACCESS, 2019, 7 : 89278 - 89291
  • [3] Real-time defect detection network for polarizer based on deep learning
    Ruizhen Liu
    Zhiyi Sun
    Anhong Wang
    Kai Yang
    Yin Wang
    Qianlai Sun
    Journal of Intelligent Manufacturing, 2020, 31 : 1813 - 1823
  • [4] Real-time defect detection network for polarizer based on deep learning
    Liu, Ruizhen
    Sun, Zhiyi
    Wang, Anhong
    Yang, Kai
    Wang, Yin
    Sun, Qianlai
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (08) : 1813 - 1823
  • [5] Real-time defect detection in 3D printing using machine learning
    Khan, Mohammad Farhan
    Alam, Aftaab
    Siddiqui, Mohammad Ateeb
    Alam, Mohammad Saad
    Rafat, Yasser
    Salik, Nehal
    Al-Saidan, Ibrahim
    MATERIALS TODAY-PROCEEDINGS, 2021, 42 : 521 - 528
  • [6] Efficient real-time defect detection for spillway tunnel using deep learning
    Feng, Chuncheng
    Zhang, Hua
    Li, Yonglong
    Wang, Shuang
    Wang, Haoran
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2021, 18 (06) : 2377 - 2387
  • [7] Efficient real-time defect detection for spillway tunnel using deep learning
    Chuncheng Feng
    Hua Zhang
    Yonglong Li
    Shuang Wang
    Haoran Wang
    Journal of Real-Time Image Processing, 2021, 18 : 2377 - 2387
  • [8] Fabric Defect Detection in Real World Manufacturing Using Deep Learning
    Nasim, Mariam
    Mumtaz, Rafia
    Ahmad, Muneer
    Ali, Arshad
    INFORMATION, 2024, 15 (08)
  • [9] A Real-Time Defect Detection Strategy for Additive Manufacturing Processes Based on Deep Learning and Machine Vision Technologies
    Wang, Wei
    Wang, Peiren
    Zhang, Hanzhong
    Chen, Xiaoyi
    Wang, Guoqi
    Lu, Yang
    Chen, Min
    Liu, Haiyun
    Li, Ji
    MICROMACHINES, 2024, 15 (01)
  • [10] Adversarial Defect Detection in Semiconductor Manufacturing Process
    Kim, Jaehoon
    Nam, Yunhyoung
    Kang, Min-Cheol
    Kim, Kihyun
    Hong, Jisuk
    Lee, Sooryong
    Kim, Do-Nyun
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2021, 34 (03) : 365 - 371