Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review

被引:0
|
作者
Verma, Sahil [1 ]
Boonsanong, Varich [1 ]
Hoang, Minh [1 ]
Hines, Keegan [2 ]
Dickerson, John [2 ]
Shah, Chirag [3 ]
机构
[1] Computer Science and Engineering, University of Washington, Seattle,WA, United States
[2] Arthur AI, Washington,DC, United States
[3] University of Washington, Seattle,WA, United States
关键词
Adversarial machine learning;
D O I
10.1145/3677119
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] The Skyline of Counterfactual Explanations for Machine Learning Decision Models
    Wang, Yongjie
    Ding, Qinxu
    Wang, Ke
    Liu, Yue
    Wu, Xingyu
    Wang, Jinglong
    Liu, Yong
    Miao, Chunyan
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2030 - 2039
  • [2] Unjustified Classification Regions and Counterfactual Explanations in Machine Learning
    Laugel, Thibault
    Lesot, Marie-Jeanne
    Marsala, Christophe
    Renard, Xavier
    Detyniecki, Marcin
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 37 - 54
  • [3] ViCE: Visual Counterfactual Explanations for Machine Learning Models
    Gomez, Oscar
    Holter, Steffen
    Yuan, Jun
    Bertini, Enrico
    [J]. PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2020, 2020, : 531 - 535
  • [4] Algorithmic Recourse: from Counterfactual Explanations to Interventions
    Karimi, Amir-Hossein
    Scholkoepf, Bernhard
    Valera, Isabel
    [J]. PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, 2021, : 353 - 362
  • [5] DECE: Decision Explorer with Counterfactual Explanations for Machine Learning Models
    Cheng, Furui
    Ming, Yao
    Qu, Huamin
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 1438 - 1447
  • [6] Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
    Mothilal, Ramaravind K.
    Sharma, Amit
    Tan, Chenhao
    [J]. FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, 2020, : 607 - 617
  • [7] AdViCE: Aggregated Visual Counterfactual Explanations for Machine Learning Model Validation
    Gomez, Oscar
    Holter, Steffen
    Yuan, Jun
    Bertini, Enrico
    [J]. 2021 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2021), 2021, : 31 - 35
  • [8] Counterfactual explanations for misclassified images: How human and machine explanations differ
    Delaney, Eoin
    Pakrashi, Arjun
    Greene, Derek
    Keane, Mark T.
    [J]. ARTIFICIAL INTELLIGENCE, 2023, 324
  • [9] Conversational Explanations of Machine Learning Predictions Through Class-contrastive Counterfactual Statements
    Sokol, Kacper
    Flach, Peter
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5785 - 5786
  • [10] Machine Learning and Explainable Artificial Intelligence Using Counterfactual Explanations for Evaluating Posture Parameters
    Dindorf, Carlo
    Ludwig, Oliver
    Simon, Steven
    Becker, Stephan
    Froehlich, Michael
    [J]. BIOENGINEERING-BASEL, 2023, 10 (05):