A complex neural network for computing modulus largest eigen-pairs of real antisymmetric matrices

被引:0
|
作者
机构
[1] Zou, Xiongfei
[2] Bu, Shirong
[3] Luo, Zhengxiang
来源
Zou, X. (zouxiongfei@sohu.com) | 1600年 / Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States卷 / 09期
关键词
Compendex;
D O I
10.12733/jcis6043
中图分类号
学科分类号
摘要
Eigenvalues and eigenfunctions
引用
收藏
相关论文
共 50 条
  • [1] Neural network based on approach for computing eigen-pairs of special orthogonal matrices
    School of Automation and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
    不详
    [J]. J. Comput. Inf. Syst., 2013, 3 (1175-1182):
  • [2] Computing Eigenvectors and Corresponding Eigenvalues with Largest or Smallest Modulus of Real Antisymmetric Matrix Based on Neural Network with Less Scale
    Tang, Ying
    Li, Jianping
    [J]. 2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 1, 2010, : 608 - 612
  • [3] A recurrent neural network computing the largest imaginary or real part of eigenvalues of real matrices
    Liu, Yiguang
    You, Zhisheng
    Cao, Liping
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (01) : 41 - 53
  • [4] A concise functional neural network computing the largest modulus eigenvalues and their corresponding eigenvectors of a real skew matrix
    Liu, Yiguang
    You, Zhisheng
    Cao, Liping
    [J]. THEORETICAL COMPUTER SCIENCE, 2006, 367 (03) : 273 - 285
  • [5] A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix
    Tan, Hang
    Liang, Xuesong
    Wan, Liping
    [J]. PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON SENSORS, MECHATRONICS AND AUTOMATION (ICSMA 2016), 2016, 136 : 577 - 585
  • [6] A novel complex neural network model for computing the largest real part of eigenvalues and the corresponding eigenvector of a real matrix
    Ye, Rong
    Tan, Hang
    Liang, Xue-Song
    Wan, Ping-Li
    [J]. PROCEEDINGS OF THE 2ND ANNUAL INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND INFORMATION SCIENCE (EEEIS 2016), 2016, 117 : 771 - 779
  • [7] COMPUTING THE LARGEST EIGENVALUE DISTRIBUTION FOR COMPLEX WISHART MATRICES
    Jones, Scott R.
    Howard, Stephen D.
    Clarkson, I. Vaughan L.
    Bialkowski, Konstanty S.
    Cochran, Douglas
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3439 - 3443
  • [8] A complex neural network algorithm for computing the largest sum of real part and imaginary part of eigenvalues and the corresponding eigenvector of a real normal matrix
    Tan, Hang
    Wan, Li-Ping
    Ye, Rong
    Liang, Xue-Song
    Wu, Zhao-Yao
    [J]. PROCEEDINGS OF THE 2ND ANNUAL INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND INFORMATION SCIENCE (EEEIS 2016), 2016, 117 : 716 - 723
  • [9] A functional neural network for computing the largest modulus eigenvalues and their corresponding eigenvectors of an anti-symmetric matrix
    Liu, YG
    You, ZS
    Cao, LP
    [J]. NEUROCOMPUTING, 2005, 67 : 384 - 397
  • [10] A concise functional neural network for computing the extremum eigenpairs of real symmetric matrices
    Liu, Yiguang
    You, Zhisheng
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 405 - 413