Morphology for grey-scale images

被引:0
|
作者
Heijmans H.J.A.M. [1 ]
机构
[1] Centre for Mathematics and Computer Science, Amsterdam
来源
关键词
Conditional operators; Flat function operators; Geodesic operator; Granulometries; Grey-scale images; Grey-value sets; H-operators; Threshold sets; Umbra transform;
D O I
10.1016/bs.aiep.2020.07.011
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The mathematical morphology of grey-level images has many special features, which are the subject of this chapter. A general procedure for proceeding from binary to grey-level morphology was presented in an earlier chapter. Here, each aspect of the morphological analysis of grey-level images is examined in depth. © 2020 Elsevier Inc.
引用
收藏
页码:355 / 401
页数:46
相关论文
共 50 条
  • [1] Grey-scale images and random sets
    Molchanov, I
    [J]. MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO IMAGE AND SIGNAL PROCESSING, 1998, 12 : 247 - 257
  • [2] Distances between grey-scale images
    Friel, N
    Molchanov, I
    [J]. MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO IMAGE AND SIGNAL PROCESSING, 1998, 12 : 283 - 290
  • [3] PRINTING GREY-SCALE IMAGES ON A FAX MACHINE
    ZEMCIK, P
    DAGLESS, EL
    [J]. MICROPROCESSORS AND MICROSYSTEMS, 1994, 18 (05) : 271 - 279
  • [4] Binocular Stereo from Grey-Scale Images
    Mads Nielsen
    Robert Maas
    Wiro J. Niessen
    Luc L.M.J. Florack
    Bart M. Ter Haar Romeny
    [J]. Journal of Mathematical Imaging and Vision, 1999, 10 : 103 - 122
  • [5] Binocular stereo from Grey-Scale images
    Nielsen, M
    Maas, R
    Niessen, WJ
    Florack, LLMJ
    Romeny, BMT
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 1999, 10 (02) : 103 - 122
  • [6] Grey-scale morphology based on fuzzy logic
    Deng, TQ
    Heijmans, HJAM
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2002, 16 (02) : 155 - 171
  • [7] Asymptotic fractals in the context of grey-scale images
    Rigaut, JP
    Schoëvaërt-Brossault, D
    Downs, AM
    Landini, G
    [J]. JOURNAL OF MICROSCOPY-OXFORD, 1998, 189 : 57 - 63
  • [8] Symmetrization of grey-scale images based on dilation
    Tuzikov, AV
    Krivonos, OV
    [J]. NONLINEAR IMAGE PROCESSING VII, 1996, 2662 : 236 - 246
  • [9] Grey-Scale Morphology Based on Fuzzy Logic
    Ting-Quan Deng
    Henk J.A.M. Heijmans
    [J]. Journal of Mathematical Imaging and Vision, 2002, 16 : 155 - 171
  • [10] Iterative TV-Regularization of Grey-Scale Images
    Fuchs M.
    Weickert J.
    [J]. Journal of Mathematical Sciences, 2019, 242 (2) : 323 - 336