AN LDLT TRUST-REGION QUASI-NEWTON METHOD

被引:0
|
作者
Brust, Johannes J. [1 ]
Gill, Philip E. [2 ]
机构
[1] School of Mathematical and Statistical Sciences, Arizona State University, Tempe,AZ,85281, United States
[2] Department of Mathematics, University of California San Diego, San Diego,CA,92093, United States
来源
SIAM Journal on Scientific Computing | 2024年 / 46卷 / 05期
关键词
Factorization - Newton-Raphson method - Newtonian flow - Online searching;
D O I
10.1137/23M1623380
中图分类号
学科分类号
摘要
For quasi-Newton methods in unconstrained minimization, it is valuable to develop methods that are robust, i.e., methods that converge on a large number of problems. Trust-region algorithms are often regarded to be more robust than line-search methods; however, because trust-region methods are computationally more expensive, the most popular quasi-Newton implementations use line-search methods. To fill this gap, we develop a trust-region method that updates an LDLT factorization, scales quadratically with the size of the problem, and is competitive with a conventional line-search method. © 2024 SIAM.
引用
收藏
相关论文
共 50 条
  • [1] A quasi-Newton trust-region method
    E. Michael Gertz
    Mathematical Programming, 2004, 100 : 447 - 470
  • [2] A quasi-Newton trust-region method
    Gertz, EM
    MATHEMATICAL PROGRAMMING, 2004, 100 (03) : 447 - 470
  • [3] A PROXIMAL QUASI-NEWTON TRUST-REGION METHOD FOR NONSMOOTH REGULARIZED OPTIMIZATION
    Aravkin, Aleksandr Y.
    Baraldi, Robert
    Orban, Dominique
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 900 - 929
  • [4] A Quasi-Newton Trust-Region Method for Well Location Optimization Under Uncertainty
    Eltahan, Esmail
    Alpak, Faruk Omer
    Sepehrnoori, Kamy
    SPE Journal, 2024, 29 (10): : 5559 - 5575
  • [5] A limited memory quasi-Newton trust-region method for box constrained optimization
    Rahpeymaii, Farzad
    Kimiaei, Morteza
    Bagheri, Alireza
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 303 : 105 - 118
  • [6] A nonmonotone quasi-Newton trust-region method of conic model for unconstrained optimization
    Qu, Shao-Jian
    Zhang, Qing-Pu
    Jiang, Su-Da
    OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (03): : 339 - 367
  • [7] Deep Neural Networks Training by Stochastic Quasi-Newton Trust-Region Methods
    Yousefi, Mahsa
    Martinez, Angeles
    ALGORITHMS, 2023, 16 (10)
  • [8] A quasi-Newton trust-region method for optimization under uncertainty using stochastic simplex approximate gradients
    Esmail Eltahan
    Faruk Omer Alpak
    Kamy Sepehrnoori
    Computational Geosciences, 2023, 27 : 627 - 648
  • [9] A quasi-Newton trust-region method for optimization under uncertainty using stochastic simplex approximate gradients
    Eltahan, Esmail
    Alpak, Faruk Omer
    Sepehrnoori, Kamy
    COMPUTATIONAL GEOSCIENCES, 2023, 27 (04) : 627 - 648
  • [10] A broyden trust region quasi-Newton method for nonlinear equations
    Zeng, Meilan
    Fu, Hongwei
    IAENG International Journal of Computer Science, 2019, 46 (03): : 1 - 5