Crack instance segmentation using splittable transformer and position coordinates

被引:1
|
作者
Zhao, Yuanlin [1 ]
Li, Wei [2 ]
Ding, Jiangang [1 ]
Wang, Yansong [1 ]
Pei, Lili [2 ]
Tian, Aojia [1 ]
机构
[1] Changan Univ, Sch Informat Engn, Xian 710064, Shaanxi, Peoples R China
[2] Changan Univ, Sch Data Sci & Artificial Intelligence, Xian 710064, Shaanxi, Peoples R China
关键词
Intelligence city construction; Crack instance segmentation; Splittable transformer; Re-parameterization; Coordinate module; Crack location segmentation transformer; MORPHOLOGY;
D O I
10.1016/j.autcon.2024.105838
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Vehicle and drone-mounted surveillance equipment face severe computational constraints, posing significant challenges for real-time, accurate crack segmentation. This paper introduces the crack location segmentation transformer (CLST) to address these issues. Images are processed to better resemble patches associated with cracks, enabling precise segmentation while significantly reducing the model's computational load. To handle varying segmentation challenges, a range of models with different computational demands has been designed to suit diverse needs. The most lightweight model can be deployed for real-time use on edge devices. A module in the neck of the pipeline encodes crack coordinate information, and end-to-end training has resulted in state-of-the-art performance across multiple datasets.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Video Instance Segmentation Using Graph Matching Transformer
    Qin, Zheyun
    Lu, Xiankai
    Nie, Xiushan
    Yin, Yilong
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 995 - 1004
  • [2] PCTrans: Position-Guided Transformer with Query Contrast for Biological Instance Segmentation
    Chen, Qi
    Huang, Wei
    Liu, Xiaoyu
    Li, Jiacheng
    Xiong, Zhiwei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 3905 - 3914
  • [3] WormSwin: Instance segmentation of C. elegans using vision transformer
    Deserno, Maurice
    Bozek, Katarzyna
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] WormSwin: Instance segmentation of C. elegans using vision transformer
    Maurice Deserno
    Katarzyna Bozek
    Scientific Reports, 13
  • [5] SeqFormer: Sequential Transformer for Video Instance Segmentation
    Wu, Junfeng
    Jiang, Yi
    Bai, Song
    Zhang, Wenqing
    Bai, Xiang
    COMPUTER VISION - ECCV 2022, PT XXVIII, 2022, 13688 : 553 - 569
  • [6] Temporally Efficient Vision Transformer for Video Instance Segmentation
    Yang, Shusheng
    Wang, Xinggang
    Li, Yu
    Fang, Yuxin
    Fang, Jiemin
    Liu, Wenyu
    Zhao, Xun
    Shan, Ying
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2875 - 2885
  • [7] Dynamic Transformer for Few-shot Instance Segmentation
    Wang, Haochen
    Liu, Jie
    Liu, Yongtuo
    Maji, Subhransu
    Sonke, Jan-Jakob
    Gavves, Efstratios
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2969 - 2977
  • [8] VISN: virus instance segmentation network for TEM images using deep attention transformer
    Xiao, Chi
    Wang, Jun
    Yang, Shenrong
    Heng, Minxin
    Su, Junyi
    Xiao, Hao
    Song, Jingdong
    Li, Weifu
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [9] Radar Instance Transformer: Reliable Moving Instance Segmentation in Sparse Radar Point Clouds
    Zeller, Matthias
    Sandhu, Vardeep S.
    Mersch, Benedikt
    Behley, Jens
    Heidingsfeld, Michael
    Stachniss, Cyrill
    IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 : 2357 - 2372
  • [10] Query Refinement Transformer for 3D Instance Segmentation
    Lu, Jiahao
    Deng, Jiacheng
    Wang, Chuxin
    He, Jianfeng
    Zhang, Tianzhu
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18470 - 18480