Investigation on different learning techniques for weighted kernel regression in solving small sample problem with noise

被引:0
|
作者
Shapiai, Mohd Ibrahim [1 ]
Sudin, Shahdan [1 ]
Arshad, Nurul Wahidah Binti [2 ]
Ibrahim, Zuwairie [2 ]
机构
[1] Universiti Teknologi Malaysia, Johor Bahru, Malaysia
[2] Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
来源
ICIC Express Letters | 2015年 / 9卷 / 04期
关键词
Iterative methods - Learning algorithms - Problem solving - Learning systems - Regression analysis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:965 / 971
相关论文
共 50 条
  • [1] Different Learning Functions for Weighted Kernel Regression in Solving Small Sample Problem with Noise
    Ibrahim, Zuwairie
    Arshad, Nurul Wahidah
    Shapiai, Mohd Ibrahim
    Mokhtar, Norrima
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2015), 2015, : 211 - 214
  • [2] Investigation on Different Kernel Functions for Weighted Kernel Regression in Solving Small Sample Problems
    Shapiai, Mohd Ibrahim
    Sudin, Shahdan
    Ibrahim, Zuwairie
    Khalid, Marzuki
    UKSIM FIFTH EUROPEAN MODELLING SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS 2011), 2011, : 64 - 69
  • [3] Weighted piecewise LDA for solving the small sample size problem in face verification
    Kyperountas, Marios
    Tefas, Anastasios
    Pitas, Ioannis
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (02): : 506 - 519
  • [4] Solving the small sample size problem of LDA
    Huang, R
    Liu, QS
    Lu, HQ
    Ma, SD
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL III, PROCEEDINGS, 2002, : 29 - 32
  • [5] Solving Attention Kernel Regression Problem via Pre-conditioner
    Song, Zhao
    Yin, Junze
    Zhang, Lichen
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [6] UNIFORM CONSISTENCY OF NONSTATIONARY KERNEL-WEIGHTED SAMPLE COVARIANCES FOR NONPARAMETRIC REGRESSION
    Li, Degui
    Phillips, Peter C. B.
    Gao, Jiti
    ECONOMETRIC THEORY, 2016, 32 (03) : 655 - 685
  • [7] Weighted projection approach for small sample size problem
    Chen, WN
    Zhang, HB
    PROCEEDINGS OF THE 11TH JOINT INTERNATIONAL COMPUTER CONFERENCE, 2005, : 884 - 887
  • [8] Learning kernel logistic regression in the presence of class label noise
    Bootkrajang, Jakramate
    Kahan, Ata
    PATTERN RECOGNITION, 2014, 47 (11) : 3641 - 3655
  • [9] Locally weighted regression with different kernel smoothers for software effort estimation
    Alqasrawi, Yousef
    Azzeh, Mohammad
    Elsheikh, Yousef
    SCIENCE OF COMPUTER PROGRAMMING, 2022, 214
  • [10] Kernel quadratic discriminant analysis for small sample size problem
    Wang, Jie
    Plataniotis, K. N.
    Lu, Juwei
    Venetsanopoulos, A. N.
    PATTERN RECOGNITION, 2008, 41 (05) : 1528 - 1538