Short-term Traffic Flow Prediction Based on KELM Optimized By Improved Slime Mould Algorithm

被引:0
|
作者
Zhao, Ming [1 ]
Tang, Jian [1 ]
Chang, Guo-Qing [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Air Transportat, Shanghai, Peoples R China
来源
JOURNAL OF INTERNET TECHNOLOGY | 2024年 / 25卷 / 05期
关键词
Short-term traffic flow; Kernel extreme learning machine; Slime mould algorithm; Prediction; Optimization;
D O I
10.70003/160792642024092505001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow prediction plays a crucial role in improving transportation efficiency and enhancing Intelligent Transportation Systems (ITS). However, the temporal, spatial, and nonlinear nature of traffic flow data presents challenges for accurate short-term prediction. We propose a short-term traffic flow prediction model based on Kernel Extreme Learning Machine (KELM) optimized by the improved Slime Mould Algorithm (SMA). KELM is an improved version of Extreme Learning Machine (ELM) that incorporates kernel functions for improved generalization and stability. SMA is a meta-heuristic algorithm inspired by the behavior of slime mould in foraging, known for its strong global searching ability. For better performance, three strategies are introduced: the Good Point Set method for optimizing the initial population, the combination of Opposition Based Learning (OBL) and Differential Evolution (DE) to improve the slime mould generation mechanism, and the use of adaptive t distribution mutation to enhance convergence speed. After comparing the performance of these improved SMAs on twelve test functions, the ISMA improved by integrating three strategies as mentioned above is best. Then the ISMA is applied to search for the optimal parameters of KELM model. Finally, the optimized KELM with optimal parameters is applied to predict the short-term traffic flow on given traffic data set. Experimental results demonstrate that the proposed model, KELM optimized by ISMA namely ISMA-KELM, outperforms existing models such as Random Forest (RF), Least Squares Support Vector Machine (LSSVM), KELM optimized by Tuna Swarm Optimization Algorithm (TSO-KELM), and KELM optimized by SMA (SMA-KELM) in terms of traffic flow prediction accuracy. The proposed model ISMA-KELM provides a promising approach for addressing the challenges of traffic flow prediction, offering improved accuracy and efficiency in real-time traffic management systems.
引用
收藏
页码:647 / 658
页数:12
相关论文
共 50 条
  • [1] Short-term Traffic Flow Prediction Based on Improved BP Neural Network Optimized by Grasshopper Optimization Algorithm
    Luo, Dong
    Guo, Xiaoxue
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, : 445 - 449
  • [2] Improved genetic algorithm optimized LSTM model and its application in short-term traffic flow prediction
    Zhang, Junxi
    Qu, Shiru
    Zhang, Zhiteng
    Cheng, Shaokang
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [3] Short-term traffic flow prediction based on optimized MSTSAN model
    Wu Z.
    Huang M.
    Yang T.
    Shi L.
    Advances in Transportation Studies, 2024, 62 : 125 - 138
  • [4] Short-term traffic flow prediction based on whale optimization algorithm optimized BiLSTM_Attention
    Xu, Xing
    Liu, Chengxing
    Zhao, Yun
    Lv, Xiaoshu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (10):
  • [5] Application of an Optimized Support Vector Regression Algorithm in Short-Term Traffic Flow Prediction
    Ai, Ruibo
    Li, Cheng
    Li, Na
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2022, 18 (06): : 719 - 728
  • [6] Short-term traffic flow prediction based on a hybrid optimization algorithm
    Yan, He
    Zhang, Tian'an
    Qi, Yong
    Yu, Dong-Jun
    APPLIED MATHEMATICAL MODELLING, 2022, 102 : 385 - 404
  • [7] Short-term traffic flow prediction algorithm based on combined model
    Rui L.
    Li Q.
    Li, Qinming (liqinming@bupt.edu.cn), 1600, Science Press (38): : 1227 - 1233
  • [8] Short-Term Traffic Prediction Based on Genetic Algorithm Improved Neural Network
    Qian, Yong-sheng
    Zeng, Jun-wei
    Zhang, Shan-fu
    Xu, De-jie
    Wei, Xu-ting
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2020, 27 (04): : 1270 - 1276
  • [9] Improved LSTM Based on Attention Mechanism for Short-term Traffic Flow Prediction
    Chen, Dejun
    Xiong, Congcong
    Zhong, Ming
    2020 10TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2020, : 71 - 76
  • [10] Short-term traffic flow prediction based on improved wavelet neural network
    Qiuxia Chen
    Ying Song
    Jianfeng Zhao
    Neural Computing and Applications, 2021, 33 : 8181 - 8190