Composite materials of Li2ZrO3 coated LiNi0.8Co0.1Mn0.1O2 and its electrochemical properties

被引:0
|
作者
Song L. [1 ]
Liu J. [1 ]
Xiao Z. [1 ]
Li L. [2 ]
Cao Z. [1 ]
Hu C. [1 ]
Li X. [1 ]
Tang F. [1 ]
机构
[1] Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, Hunan
[2] College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, Hunan
来源
Xiao, Zhongliang (kjcsongliubin@163.com) | 1600年 / Materials China卷 / 68期
基金
中国国家自然科学基金;
关键词
Coating; Composite material; Electrochemistry; Li[!sub]2[!/sub]ZrO[!sub]3[!/sub; LiNi[!sub]0.8[!/sub]Co[!sub]0.1[!/sub]Mn[!sub]0.1[!/sub]O[!sub]2[!/sub; Surface;
D O I
10.11949/j.issn.0438-1157.20170536
中图分类号
学科分类号
摘要
Li2ZrO3 coated LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion battery was synthesized by a wet chemical method which using Zr(NO3)4·5H2O and CH3COOLi·2H2O as raw materials, and the influences of the different content of Li2ZrO3 on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 was studied. SEM, TEM and EDS spectra showed that Li2ZrO3 coating was uniformly coated on the surface of LiNi0.8Co0.1Mn0.1O2 with a thickness of about 8 nm. Compared with the pristine material, LiNi0.8Co0.1Mn0.1O2 coated with 1%(mass) Li2ZrO3 exhibited excellent cycle stability with 91.77% capacity retention rate after 100 cycles at 1.0 C(the first discharge capacity was 184.7 mA·h·g-1, and the specific capacity after 100 cycles was 169.5 mA·h·g-1). The results of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests demonstrated that the Li2ZrO3 coating suppressed the side reaction between cathode material and electrolyte, and reduced the charge transfer resistance of the material during cycling, thus improved the electrochemical properties of the material. © All Right Reserved.
引用
收藏
页码:4390 / 4397
页数:7
相关论文
共 31 条
  • [1] Wang J.P., Preparation and surface coating of LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> cathode materials for Li-ion batteries, (2011)
  • [2] Kim M.H., Shinh S., Shin D., Et al., Synthesis and electrochemical properties of Li[Ni<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>]O<sub>2</sub> and Li[Ni<sub>0.8</sub>Co<sub>0.2</sub>]O<sub>2</sub> via co-precipitation, Journal of Power Sources, 159, 2, pp. 1328-1333, (2006)
  • [3] Cheralathan K.K., Kang N.Y., Park H.S., Et al., Preparation of spherical LiNi<sub>0.80</sub>Co<sub>0.15</sub>Mn<sub>0.05</sub>O<sub>2</sub> lithium-ion cathode material by continuous co-precipitation, Journal of Power Sources, 195, 5, pp. 1486-1494, (2010)
  • [4] Sun Y.K., Noh H.J., Yoon C.S., Effect of Mn content in surface on the electrochemical properties of core-shell structured cathode materials, Journal of the Electrochemical Society, 159, 1, pp. A1-A5, (2012)
  • [5] Xiao Z.L., Hu C.M., Song L.B., Et al., Optimization for synthesis technology of LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode material and electrochemical performance, CIESC Journal, 68, 4, pp. 1652-1659, (2017)
  • [6] Chen D.M., Li Y.Y., Wu Y.X., Et al., Modification research of Al<sub>2</sub>O<sub>3</sub>-caodted LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> as cathode material for lithium ion batteries, Materials Review, 30, 8, pp. 6-12, (2016)
  • [7] Luo W., Dahn J.R., The impact of Zr substitution on the structure, electrochemical performance and thermal stability of LiNi<sub>⅓</sub>Mn<sub>⅓-z</sub>Co<sub>⅓</sub>Zr<sub>z</sub>O<sub>2</sub>, Journal of the Electrochemical Society, 158, 4, (2011)
  • [8] Luo W., Zhou F., Zhao X., Et al., Synthesis, characterization, and thermal stability of LiNi <sub>⅓</sub>Mn<sub>⅓</sub>Co<sub>⅓-z</sub>Mg<sub>z</sub>O<sub>2</sub>, LiNi<sub>⅓-z</sub>Mn<sub>⅓</sub>Co<sub>⅓</sub>Mg<sub>z</sub>O<sub>2</sub>, and LiNi<sub>⅓</sub>Mn<sub>⅓</sub>-CO<sub>⅓</sub>Mg<sub>Z</sub>O<sub>2</sub>, Chemistry of Materials, 22, 3, pp. 1164-1172, (2009)
  • [9] Luo W., Li X., Dahn J.R., Synthesis, characterization, and thermal stability of Li[Ni<sub>⅓</sub>Mn<sub>⅓</sub>Co<sub>⅓-z</sub>(MnMg)<sub>z/2</sub>]O<sub>2</sub>, Chemistry of Materials, 22, 17, pp. 5065-5073, (2010)
  • [10] Wise A.M., Ban C., Weker J.N., Et al., Effect of Al<sub>2</sub>O<sub>3</sub> coating on stabilizing LiNi<sub>0.4</sub>Mn<sub>0.4</sub>Co<sub>0.2</sub>O<sub>2</sub> cathodes, Chemistry of Materials, 27, 17, pp. 6146-6154, (2015)