Numerical study on extinction characteristics of counterflow flame in premixed NH3/CH4/air mixtures under normal temperature and pressure

被引:0
|
作者
Zhang J. [1 ,2 ]
Wang J. [1 ,2 ]
Chen Y. [1 ,2 ]
Li C. [1 ,2 ]
机构
[1] MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Faculty of Environment and Life, Beijing University of Technology, Beijing
[2] Beijing Key Laboratory of Heat Transfer and Energy Conversion, The Faculty of Environment and Life, Beijing University of Technology, Beijing
基金
中国国家自然科学基金;
关键词
Ammonia fuel; Extinction limits; Mechanism verification; Premixed counterflow flame;
D O I
10.1016/j.fuel.2022.126591
中图分类号
学科分类号
摘要
Use of ammonia fuel is of particular interest because it does not release carbon dioxide during combustion. However, ammonia flameout is easy to occur in practical applications due to its poor combustion intensity and instability. It has been suggested to mix methane with ammonia to enhance its combustion performance. In this study, the Okafor mechanism was selected as the most suitable detailed chemical reaction mechanism for numerical simulation at normal temperature and pressure (NTP) by comparing and analyzing the extinction stretch rate of pure ammonia with air flame under different reaction mechanisms. The NH3-CH4-air laminar premixed counterflow flame at NTP was numerically studied to reveal variations in flame extinction stretch rate over different conditions. It was obtained that the flame extinction stretch rate was increased by increasing CH4 mole fraction in NH3/CH4 mixed fuel, as expected, and that the flame extinction limit was the greatest under lean burn condition (φ = 0.9). When the extinction limit was achieved and then exceeded, the elementary reactions that significantly contributed to the flame heat release rate at different blending ratios were obtained. By comparing the pathway analysis of double ammonia blending ratios, the elementary reaction and radical associated with addition of methane to ammonia and its effects on the flame extinction characteristics were studied. © 2022 Elsevier Ltd
引用
下载
收藏
相关论文
共 50 条
  • [1] Numerical study on extinction characteristics of counterflow flame in premixed NH3/CH4/air mixtures under normal temperature and pressure
    Zhang, Jian
    Wang, Jingfu
    Chen, Ying
    Li, Conghao
    FUEL, 2023, 334
  • [2] Numerical study on extinction characteristics of counterflow flame in premixed NH3/CH4/air mixtures under normal temperature and pressure
    Zhang, Jian
    Wang, Jingfu
    Chen, Ying
    Li, Conghao
    FUEL, 2023, 334
  • [3] Experimental and Numerical Study of NH3/CH4 Counterflow Premixed and Non-premixed Flames for Various NH3 Mixing Ratios
    Colson, Sophie
    Hirano, Yuta
    Hayakawa, Akihiro
    Kudo, Taku
    Kobayashi, Hideaki
    Galizzi, Cedric
    Escudie, Dany
    COMBUSTION SCIENCE AND TECHNOLOGY, 2021, 193 (16) : 2872 - 2889
  • [4] Chemical kinetics and numerical simulation of NO emission characteristics in CH4/NH3/air flame
    Zhang, Yupeng
    Cui, Lixin
    Feng, Lei
    Wang, Tiantian
    Bian, Cuiping
    Feng, Yifei
    Zhao, Mengmeng
    Han, Fenglei
    REACTION CHEMISTRY & ENGINEERING, 2024, 9 (06) : 1579 - 1589
  • [5] Flame Characteristics and NO Emission Behaviors in (CH4+NH3)/air Counterflow Premixed Flames Having Downstream Interaction with Opposed NH3/air Premixed Flames
    Lee, Huido
    Yoo, Chun Sang
    Park, Jeong
    JOURNAL OF THE KOREAN SOCIETY OF COMBUSTION, 2024, 29 (01) : 57 - 65
  • [6] Burning velocity and flame structure of CH4/NH3/air turbulent premixed flames at high pressure
    Ichikawa, Akinori
    Naito, Yuji
    Hayakawa, Akihiro
    Kudo, Taku
    Kobayashi, Hideaki
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (13) : 6991 - 6999
  • [7] CH4/NH3 Flame Structure and Extinction Limit under Flame-Flame Interactions
    Meng, Fanxing
    Chen, Quanwang
    Zheng, Bingbing
    Ren, Xiaohan
    ACS OMEGA, 2024, 9 (13): : 14997 - 15014
  • [8] Experimental study on thermoacoustic instability of partially premixed CH4/NH3 flame
    Wei, Dongliang
    Li, Huaan
    Zhou, Hao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 88 : 557 - 570
  • [9] Investigation on self-excited thermoacoustic instability and emission characteristics of premixed CH4/NH3/air flame
    Wei, Dongliang
    Fang, Hao
    Zhou, Hao
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 51
  • [10] Effect of radiation on laminar flame speed determination in spherically propagating NH3 -air, NH 3/CH4 -air and NH3/H2 -air flames at normal temperature and pressure
    Faghih, Mahdi
    Valera-Medina, Agustin
    Chen, Zheng
    Paykani, Amin
    COMBUSTION AND FLAME, 2023, 257