THE APPLICATION OF MODIFIED PHYSICS-INFORMED NEURAL NETWORKS IN RAYLEIGH-TAYLOR INSTABILITY

被引:0
|
作者
Qiu, Rundi [1 ,2 ,3 ,4 ]
Wang, Jingzhu [1 ,2 ,3 ,4 ]
Huang, Renfang [1 ,2 ,3 ,4 ]
Du, Tezhuan [1 ,2 ,3 ,4 ]
Wang, Yiwei [1 ,2 ,3 ,4 ]
Huang, Chenguang [1 ,2 ,3 ,4 ]
机构
[1] Key Laboratory Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing,100190, China
[2] School of Future Technology, University of Chinese Academy of Sciences, Beijing,100049, China
[3] School of Engineering Science, University of Chinese Academy of Sciences, Beijing,100049, China
[4] Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei,230031, China
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Two phase flow
引用
收藏
页码:2224 / 2234
相关论文
共 50 条
  • [1] Physics-informed neural networks for the Reynolds-Averaged Navier-Stokes modeling of Rayleigh-Taylor turbulent mixing
    Xiao, Meng-Juan
    Yu, Teng-Chao
    Zhang, You-Sheng
    Yong, Heng
    COMPUTERS & FLUIDS, 2023, 266
  • [2] The application of physics-informed neural networks to hydrodynamic voltammetry
    Chen, Haotian
    Kaetelhoen, Enno
    Compton, Richard G.
    ANALYST, 2022, 147 (09) : 1881 - 1891
  • [3] RAYLEIGH-TAYLOR INSTABILITY
    PLESSET, MS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1095 - 1095
  • [4] RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (03): : 551 - 554
  • [5] The Rayleigh-Taylor instability
    Piriz, A. R.
    Cortazar, O. D.
    Lopez Cela, J. J.
    Tahir, N. A.
    AMERICAN JOURNAL OF PHYSICS, 2006, 74 (12) : 1095 - 1098
  • [6] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [7] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [8] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] On the Application of Physics-Informed Neural Networks in the Modeling of Roll Waves
    Martins da Silva, Bruno Fagherazzi
    Rocho, Valdirene da Rosa
    Dorn, Marcio
    Fiorot, Guilherme Henrique
    ADVANCES IN HYDROINFORMATICS, VOL 2, SIMHYDRO 2023, 2024, : 89 - 106
  • [10] Approximating Rayleigh scattering in exoplanetary atmospheres using physics-informed neural networks
    Dahlbuedding, David
    Molaverdikhani, Karan
    Ercolano, Barbara
    Grassi, Tommaso
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 533 (03) : 3475 - 3483