An approximation algorithm of betweenness centrality based on vertex weighted

被引:0
|
作者
Wang M. [1 ,2 ]
Wang L. [1 ]
Feng X. [1 ]
Cao B. [2 ]
机构
[1] State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing
[2] College of Information Science and Engineering, Qufu Normal University, Rizhao, 276800, Shandong
基金
中国国家自然科学基金;
关键词
Approximation; Betweenness centrality (BC) algorithm; Calculation; Influence; Vertex weighted;
D O I
10.7544/issn1000-1239.2016.20148355
中图分类号
学科分类号
摘要
Betweenness centrality (BC) is a widely used indicator to measure the importance of network vertices. Currently the fastest time complexity of the algorithm is O(V×E). When computing the BC of vertices in networks, we need to do n times searches of single source shortest path. In big data era, networks have more nodes and edges, and the amount of calculation of BC algorithm is large. The huge amount of calculation makes the algorithm need a long time to compute each vertices' BC value, and the algorithm cannot be applied in practice. The related work focuses on approximation to reduce the running time of BC algorithm, but they also can not reduce the amount of calculation of BC algorithm significantly. In order to further reduce the amount of the calculation of BC algorithm, we propose a vertex weighted approximation algorithm to reduce the amount of calculation of BC algorithm, and the algorithm can make the calculation process be repeated many times to accumulate on a calculation by vertex weighted and select high-impact vertex as source to compute BC. We can reduce the amount of calculation significantly in this way, and meet the requirement of lower error rate and high performance. The approximation algorithm of BC based on vertex weighted can achieve 25 times speedup, and the error rate is lower than percentage of 0.01. © 2016, Science Press. All right reserved.
引用
收藏
页码:1631 / 1640
页数:9
相关论文
共 30 条
  • [1] Brandes U., A faster algorithm for betweenness centrality, Journal of Mathematical Sociology, 25, 2, pp. 163-177, (2001)
  • [2] Girvan M., Newman M., Community structure in social and biological networks, Proceedings of the National Academy of Sciences, 99, 12, pp. 7821-7826, (2002)
  • [3] Krebs V., Mapping networks of terrorist cells, Connections, 24, 3, pp. 43-52, (2002)
  • [4] Jeong H., Mason S.P., Barabesi A., Et al., Lethality and centrality in protein networks, Nature, 411, 6833, pp. 41-42, (2001)
  • [5] Liljeros F., Edling C.R., Amaral L.A., Et al., The web of human sexual contacts, Nature, 411, 6840, pp. 907-908, (2001)
  • [6] Meng X., Li Y., Zhu J., Social computing in the era of big data: Opportunities and challenges, Journal of Computer Research and Development, 50, 12, pp. 2483-2491, (2013)
  • [7] Leskovec J., Huttenlocher D., Kleinberg J., Signed networks in social media, Proc of the 28th CHI, pp. 1361-1370, (2010)
  • [8] Brandes U., Pich C., Centrality estimation in large networks, International Journal of Bifurcation & Chaos, 17, 7, pp. 2303-2318, (2007)
  • [9] Geisberger R., Sanders P., Schultes D., Better approximation of betweenness centrality, Alenex, 11, 19, pp. 90-100, (2008)
  • [10] Bader D., Kintali S., Madduri K., Et al., Approximating betweenness centrality, LNCS 4863: Proc of the WAW, pp. 124-137, (2007)