共 73 条
- [1] Dwork C., Differential privacy, Proc. of the ICALP, pp. 1-12, (2006)
- [2] Dwork C., Lei J., Differential privacy and robust statistics, Proc. of the 41st Annual ACM Symp. on Theory of Computing, pp. 371-380, (2009)
- [3] Smith A., Privacy-Preserving statistical estimation with optimal convergence rates, Proc. of the 43rd Annual ACM Symp. on Theory of Computing, pp. 813-822, (2011)
- [4] Samarati P., Sweeney L., Generalizing data to provide anonymity when disclosing information, PODS, 98, (1998)
- [5] Machanavajjhala A., Kifer D., Gehrke J., Kifer D., Venkitasubramaniam M., l-Diversity: Privacy beyond k-anonymity, ACM Trans. on Knowledge Discovery from Data (TKDD), 1, 1, (2007)
- [6] Li N., Li T., Venkatasubramanian S., t-Closeness: Privacy beyond k-anonymity and l-diversity, Proc. of the 23rd IEEE Int'l Conf. on Data Engineering, pp. 106-115, (2007)
- [7] Kasiviswanathan S.P., Lee H.K., Nissim K., Raskhodnikova S., Smith A., What can we learn privately, Proc. of the 49th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pp. 531-540, (2008)
- [8] Duchi J.C., Jordan M.I., Wainwright M.J., Local privacy and statistical minimax rates, Proc. of the 54th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pp. 429-438, (2013)
- [9] Erlingsson U., Pihur V., Korolova A., Rappor: Randomized aggregatable privacy-preserving ordinal response, Proc. of the 2014 ACM SIGSAC Conf. on Computer and Communications Security, pp. 1054-1067, (2014)
- [10] Howe J., Crowdsourcing: How the Power of the Crowd is Driving the Future of Business, (2008)