MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries

被引:0
|
作者
Zhang, Yanan [1 ]
Liu, Yanpeng [1 ]
Liu, Zhenhua [1 ]
Wu, Xiaogang [1 ]
Wen, Yuxiang [1 ]
Chen, Hangda [1 ]
Ni, Xia [1 ]
Liu, Guohan [2 ]
Huang, Juanjuan [1 ]
Peng, Shanglong [1 ]
机构
[1] National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Gansu, Lanzhou,730000, China
[2] Institute of Sensor Technology, Gansu Academy of Sciences, Gansu, Lanzhou,730000, China
来源
基金
中国国家自然科学基金;
关键词
Electrochemical deposition - Oxygen vacancies - Ions - Secondary batteries - Nitrogen - Doping (additives) - Stability - Electrolytic reduction - Cathodes - Defect engineering - Zinc;
D O I
暂无
中图分类号
学科分类号
摘要
The research and exploration of manganese-based aqueous zinc-ion batteries have been controversial of cycle stability and mechanism investigation, thus improving the stability and exploring storage mechanism are still the most main issue. Defect engineering has become an effective method to improve cycle stability. Herein, a nitrogen-doped Ε-MnO2 (MnO2@N) has been prepared using electrochemical deposition and heat treatment under nitrogen atmosphere. As the cathode for zinc-ion batteries, the capacity retention rate of MnO2@N cathode is close to 100% after 500 cycles at 0.5 A g−1, while the capacity retention rate for the initial MnO2 cathode is 62%. At 5 A g−1, the capacity retention rate of MnO2@N cathode is 83% after 1000 cycles, which is much higher than the 27% capacity retention rate for the original MnO2 cathode. And it can be found that the oxygen vacancies increase after nitrogen doping, which can improve the conductivity of the MnO2@N cathode. Also, there is Mn-N bond in MnO2@N, which can enhance the electrochemical stability of MnO2@N cathode. In addition, the electrochemical mechanism of MnO2@N cathode has been explored by the CV, GCD and GITT tests. It is found that nitrogen doping promotes the intercalation of H+ and the corresponding capacity contribution. Compared with the original MnO2 cathode, the diffusion coefficient of H+ and Zn2+in MnO2@N cathode increases. Also, the reactions during the charging and discharging process are explored through the ex-situ XRD test. And this work may provide some new ideas for improving the stability of manganese-based zinc-ion batteries. © 2021 Science Press
引用
下载
收藏
页码:23 / 32
相关论文
共 50 条
  • [1] MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries
    Zhang, Yanan
    Liu, Yanpeng
    Liu, Zhenhua
    Wu, Xiaogang
    Wen, Yuxiang
    Chen, Hangda
    Ni, Xia
    Liu, Guohan
    Huang, Juanjuan
    Peng, Shanglong
    JOURNAL OF ENERGY CHEMISTRY, 2022, 64 : 23 - 32
  • [2] MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries
    Yanan Zhang
    Yanpeng Liu
    Zhenhua Liu
    Xiaogang Wu
    Yuxiang Wen
    Hangda Chen
    Xia Ni
    Guohan Liu
    Juanjuan Huang
    Shanglong Peng
    Journal of Energy Chemistry, 2022, 64 (01) : 23 - 32
  • [3] Tin doping manganese dioxide cathode materials with the improved stability for aqueous zinc-ion batteries
    Ni, Zejuan
    Liang, Xiang
    Zhao, Limin
    Zhao, Hui
    Ge, Bo
    Li, Wenzhi
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 287
  • [4] CNT Composite β-MnO2 with Fiber Cable Shape as Cathode Materials for Aqueous Zinc-Ion Batteries
    Li, Lan
    Yin, Chengjie
    Han, Rong
    Zhong, Fujie
    Hu, Jinsong
    INORGANIC CHEMISTRY, 2024, : 13100 - 13109
  • [5] A comparative study on the structural, chemical, morphological and electrochemical properties of α-MnO2, β-MnO2 and δ-MnO2 as cathode materials in aqueous zinc-ion batteries
    Basil Chacko
    Madhuri Wuppulluri
    Materials for Renewable and Sustainable Energy, 2025, 14 (1)
  • [6] Eu doping β-MnO2 as cathode materials for high specific capacity aqueous zinc ion batteries
    School of Materials Science and Engineering, Anhui University of Science and Technology, Anhui, Huainan
    232001, China
    不详
    232001, China
    J. Energy Storage, 2024,
  • [7] The effect of copper doping in α-MnO 2 as cathode material for aqueous Zinc-ion batteries
    Lan, Rong
    Roberts, Alexander
    Gkanas, Evangelos
    Sahib, Ali Jawad Sahib
    Greszta, Agata
    Bhagat, Rohit
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 992
  • [8] Preparation of α-MnO2 Nanorods/Porous Carbon Cathode for Aqueous Zinc-ion Batteries
    Li, Yanli
    Yu, Dandan
    Lin, Sen
    Sun, Dongfei
    Lei, Ziqiang
    ACTA CHIMICA SINICA, 2021, 79 (02) : 200 - 207
  • [9] Dissolution-Redeposition Mechanism of the MnO2 Cathode in Aqueous Zinc-Ion Batteries
    Wu, Tzu-Ho
    Lin, Ya-Qi
    Althouse, Zachary D.
    Liu, Nian
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 12267 - 12274
  • [10] ε-MnO2@C cathode with high stability for aqueous zinc-ion batteries
    Zhao, Wenyu
    Kong, Qingquan
    Wu, Xiaoqiang
    An, Xuguang
    Zhang, Jing
    Liu, Xiaonan
    Yao, Weitang
    APPLIED SURFACE SCIENCE, 2022, 605