An iterative method for classifying stroke subjects' motor imagery EEG data in the BCI-FES rehabilitation training system

被引:0
|
作者
MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China [1 ]
机构
来源
关键词
Support vector machines;
D O I
10.1007/978-3-642-37835-5_32
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 22 条
  • [1] Classification of Stroke Patients' Motor Imagery EEG with Autoencoders in BCI-FES Rehabilitation Training System
    Chen, Mushangshu
    Liu, Ye
    Zhang, Liqing
    NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 : 202 - 209
  • [2] A tensor-based scheme for stroke patients' motor imagery EEG analysis in BCI-FES rehabilitation training
    Liu, Ye
    Li, Mingfen
    Zhang, Hao
    Wang, Hang
    Li, Junhua
    Jia, Jie
    Wu, Yi
    Zhang, Liqing
    JOURNAL OF NEUROSCIENCE METHODS, 2014, 222 : 238 - 249
  • [3] Application of BCI-FES System on Stroke Rehabilitation
    Jiang, Shenglong
    Chen, Long
    Wang, Zhongpeng
    Xu, Jiapeng
    Qi, Cheng
    Qi, Hongzhi
    He, Feng
    Ming, Dong
    2015 7TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2015, : 1112 - 1115
  • [4] BCI-FES training system design and implementation for rehabilitation of stroke patients
    Meng, Fei
    Tong, Kai-yu
    Chan, Suk-tak
    Wong, Wan-wa
    Lui, Ka-him
    Tang, Kwok-wing
    Gao, Xiaorong
    Gao, Shangkai
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 4103 - +
  • [5] Enhancement of cortical activation for motor imagery during BCI-FES training
    Wang, Zhongpeng
    Chen, Long
    Yi, Weibo
    Gu, Bin
    Liu, Shuang
    An, Xingwei
    Xu, Minpeng
    Qi, Hongzhi
    He, Feng
    Wan, Baikun
    Ming, Dong
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2527 - 2530
  • [6] BCI-FES system for neuro-rehabilitation of stroke patients
    Jure, Fabricio A.
    Carrere, Lucia C.
    Gentiletti, Gerardo G.
    Tabernig, Carolina B.
    20TH ARGENTINEAN BIOENGINEERING SOCIETY CONGRESS (XX ARGENTINE BIOENGINEERING CONGRESS AND IX CONFERENCE OF CLINICAL ENGINEERING), (SABI 2015), 2016, 705
  • [7] Low-quality training data detection method of EEG signals for motor imagery BCI system
    Ouyang, Rui
    Jin, Zihao
    Tang, Shuhao
    Fan, Cunhang
    Wu, Xiaopei
    JOURNAL OF NEUROSCIENCE METHODS, 2022, 376
  • [8] How Many EEG Channels Are Optimal for a Motor Imagery Based BCI for Stroke Rehabilitation?
    Xu, Ren
    Allison, Brendan Z.
    Ortner, Rupert
    Irimia, Danut C.
    Espinosa, Arnau
    Lechner, Alexander
    Guger, Christoph
    CONVERGING CLINICAL AND ENGINEERING RESEARCH ON NEUROREHABILITATION II, VOLS 1 AND 2, 2017, 15 : 1109 - 1113
  • [9] EEG Coherence Analysis in Subjects After Rehabilitation from Stroke with Motor Imagery
    da Silva, L. C. P.
    Paz, C. C. S. C.
    Miranda de Sa, A. M. F. L.
    Tierra-Criollo, C. J.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 2, 2019, 68 (02): : 325 - 329
  • [10] Motor imagery BCI for upper limb stroke rehabilitation: an evaluation of the EEG recordings using coherence analysis
    Tung, Sau Wai
    Guan, Cuntai
    Ang, Kai Keng
    Phua, Kok Soon
    Wang, Chuanchu
    Zhao, Ling
    Teo, Wei Peng
    Chew, Effie
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 261 - 264