Achievable strength of nanostructured composites with co-deformable components

被引:3
|
作者
Han K. [1 ]
Chen J. [1 ]
机构
[1] National High Magnetic Field Laboratory, Tallahassee, FL
关键词
CuAg; CuNb; Nanofibers; Pearlite;
D O I
10.4028/www.scientific.net/MSF.683.243
中图分类号
学科分类号
摘要
Large amount of research has been undertaken on the effects of conventional thermomechanical treatment and chemistry variations on the mechanical properties of nanostructured bulk materials developed for wire rod and sheet products. The thermomechanical treatments are selected to refine as much as possible the microstructure to achieve high strength. In most of the cases, the alloy additions are deliberated added to be beneficial to the mechanical properties of the nanostructured materials, especially the tensile strength. In addition to refine the microstructure, both the thermomechanical treatments and chemistry variations may also alter the shape and distribution of the strengthening phases. This article describes the nanostructured composites with face-centered cubic (fcc) copper or body-centered cubic (bcc) ferrite as matrix and discusses several factors that affect the mechanical strength of such materials. © (2011) Trans Tech Publications, Switzerland.
引用
收藏
页码:243 / 247
页数:4
相关论文
共 50 条
  • [1] Thermoplastic composites containing deformable reinforcing components
    Baird, DG
    Huang, W
    Huang, JH
    Young, RT
    ANTEC '99: PLASTICS BRIDGING THE MILLENNIA, CONFERENCE PROCEEDINGS, VOLS I-III: VOL I: PROCESSING; VOL II: MATERIALS; VOL III: SPECIAL AREAS;, 1999, : 3952 - 3955
  • [2] Metallocarbosilanes and elementoxanealuminoxanes as precursors of components of nanostructured ceramic composites
    Shcherbakova, G. I.
    Storozhenko, P. A.
    Zhigalov, D. V.
    Varfolomeev, M. S.
    Blokhina, M. Kh.
    Kutinova, N. B.
    RUSSIAN CHEMICAL BULLETIN, 2020, 69 (05) : 875 - 884
  • [3] Metallocarbosilanes and elementoxanealuminoxanes as precursors of components of nanostructured ceramic composites
    G. I. Shcherbakova
    P. A. Storozhenko
    D. V. Zhigalov
    M. S. Varfolomeev
    M. Kh. Blokhina
    N. B. Kutinova
    Russian Chemical Bulletin, 2020, 69 : 875 - 884
  • [4] Crustacean-Derived Biomimetic Components and Nanostructured Composites
    Grunenfelder, Lessa Kay
    Herrera, Steven
    Kisailus, David
    SMALL, 2014, 10 (16) : 3207 - 3232
  • [5] STUDY OF NANOSTRUCTURED WC-CO COMPOSITES
    FANG, ZG
    EASON, JW
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 1995, 13 (05): : 297 - 303
  • [6] Nanostructured organic/inorganic composites as transparent materials for optical components
    Mataki, H. (mataki@kri-inc.jp), 1600, Japan Society of Applied Physics (43):
  • [7] Nanostructured organic/inorganic composites as transparent materials for optical components
    Mataki, H
    Yamaki, S
    Fukui, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2004, 43 (8B): : 5819 - 5823
  • [8] Scale and twist effects on the strength of nanostructured yarns and reinforced composites
    Beyerlein, I. J.
    Porwal, P. K.
    Zhu, Y. T.
    Hu, K.
    Xu, X. F.
    NANOTECHNOLOGY, 2009, 20 (48)
  • [9] High strength, deformable nanotwinned Al-Co alloys
    Xue, S.
    Li, Qiang
    Xie, D. Y.
    Zhang, Y. F.
    Wang, Han
    Wang, Haiyan
    Wang, J.
    Zhang, X.
    MATERIALS RESEARCH LETTERS, 2019, 7 (01): : 33 - 39
  • [10] Effect of Carbon Nanotubes on Strength Characteristics of Nanostructured Ceramic Composites for Biomedicine
    Golovin Y.I.
    Tyurin A.I.
    Korenkov V.V.
    Rodaev V.V.
    Zhigachev A.O.
    Umrikhin A.V.
    Pirozhkova T.S.
    Razlivalova S.S.
    Nanotechnologies in Russia, 2018, 13 (3-4): : 168 - 172