Finding the Number of Latent Topics With Semantic Non-Negative Matrix Factorization

被引:0
|
作者
Vangara, Raviteja [1 ]
Bhattarai, Manish [1 ]
Skau, Erik [2 ]
Chennupati, Gopinath [3 ]
Djidjev, Hristo [2 ,4 ]
Tierney, Tom [5 ]
Smith, James P. [1 ]
Stanev, Valentin G. [6 ]
Alexandrov, Boian S. [1 ]
机构
[1] Theoretical Division, Los Alamos National Laboratory, Los Alamos,NM,87545, United States
[2] Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos,NM,87545, United States
[3] Amazon Alexa, Sunnyvale,CA,94089, United States
[4] Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia,1113, Bulgaria
[5] Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos,NM,87545, United States
[6] Department of Materials Science and Engineering, University of Maryland, College Park,MD,20742, United States
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:117217 / 117231
相关论文
共 50 条
  • [1] Finding the Number of Latent Topics With Semantic Non-Negative Matrix Factorization
    Vangara, Raviteja
    Bhattarai, Manish
    Skau, Erik
    Chennupati, Gopinath
    Djidjev, Hristo
    Tierney, Tom
    Smith, James P.
    Stanev, Valentin G.
    Alexandrov, Boian S.
    IEEE ACCESS, 2021, 9 : 117217 - 117231
  • [2] Latent semantic image retrieval based on non-negative matrix factorization
    Inst. of Pattern Recognition and Image Processing, Shanghai Jiaotong Univ., Shanghai 200240, China
    Shanghai Jiaotong Daxue Xuebao, 2006, 5 (787-790):
  • [3] Distributed non-negative matrix factorization with determination of the number of latent features
    Gopinath Chennupati
    Raviteja Vangara
    Erik Skau
    Hristo Djidjev
    Boian Alexandrov
    The Journal of Supercomputing, 2020, 76 : 7458 - 7488
  • [4] Distributed non-negative matrix factorization with determination of the number of latent features
    Chennupati, Gopinath
    Vangara, Raviteja
    Skau, Erik
    Djidjev, Hristo
    Alexandrov, Boian
    JOURNAL OF SUPERCOMPUTING, 2020, 76 (09): : 7458 - 7488
  • [5] On the equivalence between Non-negative Matrix Factorization and Probabilistic Latent Semantic Indexing
    Ding, Chris
    Li, Tao
    Peng, Wei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (08) : 3913 - 3927
  • [6] Supervised non-negative matrix factorization based latent semantic image indexing
    梁栋
    杨杰
    常宇畴
    ChineseOpticsLetters, 2006, (05) : 272 - 274
  • [7] Analysis of latent Dirichlet allocation and non-negative matrix factorization using latent semantic indexing
    Saqib, Sheikh Muhammad
    Ahmad, Shakeel
    Syed, Asif Hassan
    Naeem, Tariq
    Alotaibi, Fahad Mazaed
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2019, 6 (10): : 94 - 102
  • [8] A unified statistical approach to non-negative matrix factorization and probabilistic latent semantic indexing
    Devarajan, Karthik
    Wang, Guoli
    Ebrahimi, Nader
    MACHINE LEARNING, 2015, 99 (01) : 137 - 163
  • [9] A unified statistical approach to non-negative matrix factorization and probabilistic latent semantic indexing
    Karthik Devarajan
    Guoli Wang
    Nader Ebrahimi
    Machine Learning, 2015, 99 : 137 - 163
  • [10] Semantic Non-Negative Matrix Factorization for Term Extraction
    Nugumanova, Aliya
    Alzhanov, Almas
    Mansurova, Aiganym
    Rakhymbek, Kamilla
    Baiburin, Yerzhan
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (07)