Best constrained multi-degree reduction of WSGB curves in L2-norm

被引:0
|
作者
Liu, Yu [1 ,2 ]
Wang, Guojin [1 ,2 ]
机构
[1] Institute of Computer Images and Graphics, Zhejiang University, Hangzhou 310027, China
[2] State Key Laboratory of CAD and CG, Zhejiang University, Hangzhou 310027, China
来源
关键词
9;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2619 / 2628
相关论文
共 50 条
  • [1] Constrained Bezier curves' best multi-degree reduction in the L2-norm
    Zhang, RJ
    Wang, GJ
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2005, 15 (09) : 843 - 850
  • [2] Constrained Bézier curves' best multi-degree reduction in the L2-norm
    ZHANG Renjiang 1
    2. China Institute of Metrology
    Progress in Natural Science:Materials International, 2005, (09) : 843 - 850
  • [3] Perturbing Bezier coefficients for best constrained degree reduction in the L2-norm
    Zheng, JM
    Wang, GZ
    GRAPHICAL MODELS, 2003, 65 (06) : 351 - 368
  • [4] Multi-degree reduction of disk Béezier curves in L2 norm
    Hu, Qianqian
    Wang, Guojin
    Journal of Information and Computational Science, 2010, 7 (05): : 1045 - 1057
  • [5] Gk,l-constrained multi-degree reduction of Bezier curves
    Gospodarczyk, Przemyslaw
    Lewanowicz, Stanislaw
    Wozny, Pawel
    NUMERICAL ALGORITHMS, 2016, 71 (01) : 121 - 137
  • [6] Gk,l-constrained multi-degree reduction of Bézier curves
    Przemysław Gospodarczyk
    Stanisław Lewanowicz
    Paweł Woźny
    Numerical Algorithms, 2016, 71 : 121 - 137
  • [7] Constrained polynomial degree reduction in the L2-norm equals best weighted Euclidean approximation of Bezier coefficients
    Ahn, YJ
    Lee, BG
    Park, YB
    Yoo, JC
    COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (02) : 181 - 191
  • [8] Constrained multi-degree reduction of rational Bezier curves using reparameterization
    Cai Hong-jie
    Wang Guo-jin
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (10): : 1650 - 1656
  • [9] Polynomial degree reduction in the L2-norm equals best Euclidean approximation of Bezier coefficients
    Lutterkort, D
    Peters, J
    Reif, U
    COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (07) : 607 - 612
  • [10] Least squares approximation of Bezier coefficients provides best degree reduction in the L2-norm
    Peters, J
    Reif, U
    JOURNAL OF APPROXIMATION THEORY, 2000, 104 (01) : 90 - 97