Terminal zeroing neural network for time-varying matrix computing under bounded noise

被引:0
|
作者
Zhong, Guomin [1 ]
Tang, Yifei [1 ]
Sun, Mingxuan [1 ]
机构
[1] College of Information Engineering, Zhejiang University of Technology, Hangzhou,310023, China
来源
基金
中国国家自然科学基金;
关键词
Matrix algebra - Motion planning;
D O I
10.11959/j.issn.1000-436x.2024166
中图分类号
学科分类号
摘要
To improve the convergence performance of zeroing neural network (ZNN) for time-varying matrix computation problems solving, a terminal zeroing neural network (TZNN) with noise resistance and its logarithmically accelerated form (LA-TZNN) were proposed. The terminal attraction of the error dynamic equation were analyzed, and the results showed that the neural state of the proposed networks can converge to the theoretical solution within a fixed time when subjected to bounded noises. In addition, the LA-TZNN could achieve logarithmical settling-time stability, and its convergence speed was faster than the TZNN. Considering that the initial error was bounded in actual situations, an upper bound of the settling-time in a semi-global sense was given, and an adjustable parameter was set to enable the network to converge within a predefined time. The two proposed models were applied to solve the time-varying matrix inversion and trajectory planning of redundant manipulators PUMA560. The simulation results further verified that compared with the conventional ZNN design, the proposed methods have shorter settling-time, higher convergence accuracy, and can effectively suppress bounded noise interference. © 2024 Editorial Board of Journal on Communications. All rights reserved.
引用
收藏
页码:55 / 67
相关论文
共 50 条
  • [1] An Efficient Anti-Noise Zeroing Neural Network for Time-Varying Matrix Inverse
    Hu, Jiaxin
    Yang, Feixiang
    Huang, Yun
    AXIOMS, 2024, 13 (08)
  • [2] A robust noise tolerant zeroing neural network for solving time-varying linear matrix equations
    Gerontitis, Dimitrios
    Behera, Ratikanta
    Shi, Yang
    Stanimirovic, Predrag S.
    NEUROCOMPUTING, 2022, 508 : 254 - 274
  • [3] Zeroing neural network for time-varying convex quadratic programming with linear noise
    Li J.
    Liu Z.
    Rong Y.
    Li Z.
    Liao B.
    Qu L.
    Liu Z.
    Lin K.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (04): : 226 - 233
  • [4] A Dynamic Parameter Noise-Tolerant Zeroing Neural Network for Time-Varying Quaternion Matrix Equation With Applications
    Xiao, Lin
    Zhang, Yuanfang
    Huang, Wenqian
    Jia, Lei
    Gao, Xieping
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 8205 - 8214
  • [5] Zeroing neural network approaches for computing time-varying minimal rank outer inverse
    Stanimirovic, Predrag S.
    Mourtas, Spyridon D.
    Mosic, Dijana
    Katsikis, Vasilios N.
    Cao, Xinwei
    Li, Shuai
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 465
  • [6] Double integral-enhanced Zeroing neural network with linear noise rejection for time-varying matrix inverse
    Liao, Bolin
    Han, Luyang
    Cao, Xinwei
    Li, Shuai
    Li, Jianfeng
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (01) : 197 - 210
  • [7] Computing Time-Varying Quadratic Optimization With Finite-Time Convergence and Noise Tolerance: A Unified Framework for Zeroing Neural Network
    Xiao, Lin
    Li, Kenli
    Du, Mingxing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (11) : 3360 - 3369
  • [8] Zeroing neural network model for solving a generalized linear time-varying matrix equation
    Zhang, Huamin
    Yin, Hongcai
    AIMS MATHEMATICS, 2022, 7 (02): : 2266 - 2280
  • [9] A fixed-time convergent and noise-tolerant zeroing neural network for online solution of time-varying matrix inversion
    Jin, Jie
    Zhu, Jingcan
    Zhao, Lv
    Chen, Lei
    APPLIED SOFT COMPUTING, 2022, 130
  • [10] Zeroing Neural Network for Pseudoinversion of an Arbitrary Time-Varying Matrix Based on Singular Value Decomposition
    Kornilova, Mariya
    Kovalnogov, Vladislav
    Fedorov, Ruslan
    Zamaleev, Mansur
    Katsikis, Vasilios N.
    Mourtas, Spyridon D.
    Simos, Theodore E.
    MATHEMATICS, 2022, 10 (08)