Fate, distribution, and transport dynamics of Per- and Polyfluoroalkyl Substances (PFASs) in the environment

被引:2
|
作者
Alam, Md Shahin [1 ]
Abbasi, Alireza [1 ]
Chen, Gang [1 ]
机构
[1] Florida State Univ, Dept Civil & Environm Engn, Tallahassee, FL 32310 USA
关键词
PFAS Chemistry; Fate and Transport; Vadose Zone Transport; Surface Water Transport; Atmospheric Transport; PERFLUOROALKYL SUBSTANCES; ADSORPTION; RETENTION; REMOVAL; PLANTS; WATER; PFOA; SAND;
D O I
10.1016/j.jenvman.2024.123163
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Per- and Polyfluoroalkyl Substances (PFASs) are persistent organic pollutants with significant environmental and health impacts due to their widespread occurrence, bioaccumulation potential, and resistance to degradation. This paper comprehensively reviews current knowledge of PFAS fate and transport mechanisms by correlating PFAS leaching, retention, and movement to their physicochemical properties and environmental factors based on observing PFAS fate and transport in unsaturated zones, surface water, sediments, plants, and atmosphere. The complex and unique physiochemical properties of PFASs, such as their carbon-fluorine bonds and amphiphilic nature, determine their environmental behavior and persistence. Recent studies emphasize that concentrationdependent affinity coefficients predict the transport of diverse PFAS mixtures by considering the impact of the Air-Water Interface (AWI). These studies highlight the complex interactions that influence PFAS behavior in environmental systems and the need for refined modeling techniques to account for transport dynamics. Competitive adsorption at the AWI, influenced by PFAS physicochemical properties and environmental factors, is crucial. PFAS chain length profoundly affects PFAS volatility and mobility, i.e., longer chains show higher solid matrix adsorption, while shorter chains exhibit greater atmospheric deposition potential. Solution chemistry, encompassing pH and ionic strength, variably alters PFAS sorption behaviors. Mathematical models, such as the Leverett Thermodynamic Model (LTM) and Surface Roughness Multipliers (SRM), effectively predict PFAS retention, offering enhanced accuracy for surface-active solutes through empirical adjustments. Co-contaminants' presence influences the transport behavior of PFASs in the environment. Microbial activity alters PFAS retention, while microplastics, especially polyamide, contribute to their adsorption. These complex interactions govern PFAS fate and transport in the environment. The paper identifies critical gaps in current understanding, including the fate of PFASs, analytical challenges, ecological risk assessment methods, and the influence of episodic events on PFAS transport dynamics. This paper also investigates the research gap in refining current models and experimental approaches to predict PFAS transport accurately and enhance risk mitigation efforts. Addressing these gaps is crucial for advancing remediation strategies and regulatory frameworks to mitigate PFAS contamination effectively.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Fate and transport of per- and polyfluoroalkyl substances (PFASs) in the vadose zone
    Sharifan, Hamidreza
    Bagheri, Majid
    Wang, Dan
    Burken, Joel G.
    Higgins, Christopher P.
    Liang, Yanna
    Liu, Jinxia
    Schaefer, Charles E.
    Blotevogel, Jens
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 771 (771)
  • [2] Review of the fate and transformation of per- and polyfluoroalkyl substances (PFASs) in landfills
    Hamid, Hanna
    Li, Loretta Y.
    Grace, John R.
    ENVIRONMENTAL POLLUTION, 2018, 235 : 74 - 84
  • [3] Nordic research on per- and polyfluoroalkyl substances (PFASs)
    Ian T. Cousins
    Environmental Science and Pollution Research, 2013, 20 : 7926 - 7929
  • [4] Nordic research on per- and polyfluoroalkyl substances (PFASs)
    Cousins, Ian T.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2013, 20 (11) : 7926 - 7929
  • [5] A critical review of the occurrence, fate and treatment of per- and polyfluoroalkyl substances (PFASs) in landfills
    Li, Jia
    Xi, Beidou
    Zhu, Ganghui
    Yuan, Ying
    Liu, Weijiang
    Gong, Yi
    Tan, Wenbing
    ENVIRONMENTAL RESEARCH, 2023, 218
  • [6] Per- and polyfluoroalkyl substances in the environment
    Evich, Marina G.
    Davis, Mary J. B.
    McCord, James P.
    Acrey, Brad
    Awkerman, Jill A.
    Knappe, Detlef R. U.
    Lindstrom, Andrew B.
    Speth, Thomas F.
    Tebes-Stevens, Caroline
    Strynar, Mark J.
    Wang, Zhanyun
    Weber, Eric J.
    Henderson, W. Matthew
    Washington, John W.
    SCIENCE, 2022, 375 (6580) : 512 - +
  • [7] Enhancing photochemical defluorination of per- and polyfluoroalkyl substances (PFASs)
    Liu, Zekun
    Bentel, Michael
    Yu, Yaochun
    Men, Yujie
    Liu, Jinyong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [8] The role of microplastics as carriers of per- and polyfluoroalkyl substances and their fate in the environment
    Ding, Xiaoyan
    Liu, Shihong
    Tang, Shiyue
    Qin, Shibin
    Mei, Weiping
    Ali, Mukhtiar
    Wang, Jun
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2024, 181
  • [9] Tracing per- and polyfluoroalkyl substances (PFASs) in the aquatic environment: Target analysis and beyond
    Wang, Qi
    Ruan, Yuefei
    Yuen, Calista N. T.
    Lin, Huiju
    Yeung, Leo W. Y.
    Leung, Kenneth M. Y.
    Lam, Paul K. S.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 169
  • [10] Sulfluramid use in Brazilian agriculture: A source of per- and polyfluoroalkyl substances (PFASs) to the environment
    Nascimento, Rodrigo A.
    Nunoo, Deborah B. O.
    Bizkarguenaga, Ekhine
    Schultes, Lara
    Zabaleta, Itsaso
    Benskin, Jonathan P.
    Spano, Saulo
    Leonel, Juliana
    ENVIRONMENTAL POLLUTION, 2018, 242 : 1436 - 1443