Local maximum ozone concentration prediction using neural networks

被引:0
|
作者
Wieland, Dominik [1 ]
机构
[1] Technische Universität Wien, Institut fur Informationssysteme, Favoritenstrasse 9, A-1040 Wien, Austria
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper is a summary of the author's master's thesis of the same name (German title: Prognose lokaler Ozonmaxima unter Verwendung neuronaler Netze). The work describes the use of Artificial Neural Networks (ANNs) for the short term prediction of maximum ozone concentrations in the East Austrian region. Various Multilayer Perceptron topologies (MLPs), Elman Networks (EN) and Modified Elman Networks (MEN) were tested. The individual models used ozone, temperature, cloud cover and wind data taken from the summer months of 1995 and 1996. The achieved results were satisfactory. Comparisons with alternative models showed that the neural approaches used in this study were superior.
引用
收藏
页码:3 / 6
相关论文
共 50 条
  • [1] Ozone Concentration Prediction using Artificial Neural Networks
    Gavrila, Camelia
    [J]. REVISTA DE CHIMIE, 2017, 68 (10): : 2224 - 2227
  • [2] A neural prediction model for the maximum daily ozone concentration
    Nunnari, G
    Nucifora, A
    [J]. AIR POLLUTION MODELLING AND SIMULATION, PROCEEDINGS, 2002, : 557 - 559
  • [3] Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks
    Abdul-Wahab, SA
    Al-Alawi, SM
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2002, 17 (03) : 219 - 228
  • [4] Prediction of Tropospheric Ozone Concentration by Employing Artificial Neural Networks
    Ozdemir, Huseyin
    Demir, Goksel
    Altay, Gokmen
    Albayrak, Sefika
    Bayat, Cuma
    [J]. ENVIRONMENTAL ENGINEERING SCIENCE, 2008, 25 (09) : 1249 - 1254
  • [5] PREDICTION OF MAXIMUM OZONE CONCENTRATION USING BIG DATA MODELS
    Kaid, Z.
    Attouch, M.
    Mastefaoui, Z.
    Laksaci, A.
    [J]. APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (06): : 14231 - 14239
  • [6] Prediction of Ozone Concentration in Ambient Air Using Multilinear Regression and the Artificial Neural Networks Methods
    Arsic, Milica
    Mihajlovic, Ivan
    Nikolic, Djordje
    Zivkovic, Zivan
    Panic, Marija
    [J]. OZONE-SCIENCE & ENGINEERING, 2020, 42 (01) : 79 - 88
  • [7] Neural networks for analysing the relevance of input variables in the prediction of tropospheric ozone concentration
    Gomez-Sanchis, Juan
    Martin-Guerrero, Jose D.
    Soria-Olivas, Emilio
    Vila-Frances, Joan
    Carrasco, Jose L.
    del Valle-Tascon, Secundino
    [J]. ATMOSPHERIC ENVIRONMENT, 2006, 40 (32) : 6173 - 6180
  • [8] Prediction of daily maximum ground ozone concentration using support vector machine
    Chelani, Asha B.
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2010, 162 (1-4) : 169 - 176
  • [9] Prediction of daily maximum ground ozone concentration using support vector machine
    Asha B. Chelani
    [J]. Environmental Monitoring and Assessment, 2010, 162 : 169 - 176
  • [10] Fuzzy inductive reasoning for the prediction of maximum ozone concentration
    Gómez, P
    Nebot, A
    Mugica, F
    Wotawa, F
    [J]. SIMULATION IN INDUSTRY 2001, 2001, : 535 - 542