Implementing the strength pareto evolutionary algorithm (SPEA) for the planning of electrical distribution systems including sag voltage

被引:1
|
作者
García, Carlos A. [1 ]
García, Edwin [2 ]
Villada, Fernando [3 ]
机构
[1] Empresas Publicas de Medellín, Carrera 58 # 52-125, Medellín, Antioquia, Colombia
[2] Grupo de Investigación TESLA, Universidad de Antioquia, Calle 67 # 53-108,20-113, Medellín, Antioquia, Colombia
[3] Departamento de Ingeniería Eléctrica, Universidad de Antioquia, Calle 67 # 53-108, 20-421, Medellín, Antioquia, Colombia
来源
Informacion Tecnologica | 2015年 / 26卷 / 05期
关键词
D O I
10.4067/S0718-07642015000500019
中图分类号
学科分类号
摘要
This article describes the implementation of the multi-objective evolutionary algorithm Pareto front (SPEA) for the planning of distribution system expansion, taking as target functions the investment costs and the number of Sag voltages expected per year. The algorithm is implemented by applying it to real distribution system, given some fixed system parameters such as the number of network segments, number of nodes and the number of initial population. Other variables that are proper of evolutionary algorithms such as percentage of generation population that crosses another (cross) and mutation are taken into consideration. It is concluded that the implementation of SPEA for planning real distribution systems is a good and efficient computational tool when it is necessary to consider several objective functions.
引用
收藏
页码:155 / 168
相关论文
共 36 条
  • [1] SPEA2+: Improving the performance of the strength Pareto evolutionary algorithm 2
    Kim, M
    Hiroyasu, T
    Miki, M
    Watanabe, S
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN VIII, 2004, 3242 : 742 - 751
  • [2] An approach based on the strength pareto evolutionary algorithm 2 for power distribution system planning
    Rivas-Dávalos, F
    Irving, MR
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 707 - 720
  • [3] A First Running Time Analysis of the Strength Pareto Evolutionary Algorithm 2 (SPEA2)
    Ren, Shengjie
    Bian, Chao
    Li, Miqing
    Qian, Chao
    PARALLEL PROBLEM SOLVING FROM NATURE-PSN XVIII, PPSN 2024, PT III, 2024, 15150 : 295 - 312
  • [4] The Strength Pareto Evolutionary Algorithm 2 (SPEA2) applied to simultaneous multimission waveform design
    Amuso, Vincent J.
    Enslin, Jason
    2007 INTERNATIONAL WAVEFORM DIVERSITY & DESIGN CONFERENCE, 2007, : 407 - 417
  • [5] Gait planning of biped robots based on strength Pareto evolutionary algorithm
    Bi S.
    Zhuang Z.-J.
    Min H.-Q.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2011, 39 (10): : 68 - 73
  • [6] Performance optimization of a microchannel heat sink using the Improved Strength Pareto Evolutionary Algorithm (SPEA2)
    A. M. Adham
    N. Mohd-Ghazali
    R. Ahmad
    Journal of Engineering Thermophysics, 2015, 24 : 86 - 100
  • [7] Performance optimization of a microchannel heat sink using the Improved Strength Pareto Evolutionary Algorithm (SPEA2)
    Adham, A. M.
    Mohd-Ghazali, N.
    Ahmad, R.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2015, 24 (01) : 86 - 100
  • [8] Blind Source Separation with Strength Pareto Evolutionary Algorithm 2 (SPEA2) Using Discrete Wavelet Transform
    Celik, Husamettin
    Karaboga, Nurhan
    ELECTRONICS, 2023, 12 (21)
  • [9] pSPEA2: Optimization Fitness and Distance Calculations for Improving Strength Pareto Evolutionary Algorithm 2 (SPEA2)
    Zaenudin, Efendi
    Kistijantoro, Achmad Imam
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY SYSTEMS AND INNOVATION (ICITSI), 2016,
  • [10] Multi-Objective Clustering Ensemble for High-Dimensional Data based on Strength Pareto Evolutionary Algorithm (SPEA-II)
    Wahid, Abdul
    Gao, Xiaoying
    Andreae, Peter
    PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (IEEE DSAA 2015), 2015, : 133 - 141