ZERO-DISPERSION LIMIT OF THE CALOGERO--MOSER DERIVATIVE NLS EQUATION

被引:0
|
作者
Badreddine, Rana [1 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, UMR 8628, Batiment 307, F-91405 Orsay, France
关键词
Calogero--Sutherland--Moser systems; derivative nonlinear Schro; dinger equation (DNLS); explicit solution; Hardy space; semiclassical limit; zero-dispersion limit; KORTEWEG-DE-VRIES; EXPLICIT FORMULA; ONO-EQUATION; ASYMPTOTICS;
D O I
10.1137/24M1646935
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the zero-dispersion limit of the Calogero--Moser derivative nonlinear Schro"\dinger equation iDtu + D x 2 u \pm 2D\Pi(|u|2) \cdot u = 0, x E \BbbR, starting from initial data u 0 E L 2 + (\BbbR) f-L\infty(\BbbR), where D =-iDxand \Pi is the SzegoH\ projector defined as \Piehat\widu(\xi) = 1 [0,+ \infty ) ( \xi ) u widehat\( \xi ). We characterize the zero-dispersion limit solution by an explicit formula. Moreover, we identify it in terms of the branches of the multivalued solution of the inviscid Burgers--Hopf equation. Finally, we infer that it satisfies a maximum principle.
引用
收藏
页码:7228 / 7249
页数:22
相关论文
共 38 条