From Big Data to Data Science: A Multi-disciplinary Perspective

被引:0
|
作者
College of Computer Science, Zhejiang University, China [1 ]
不详 [2 ]
机构
来源
Big. Data Res. | / 1-1期
关键词
D O I
10.1016/j.bdr.2014.08.002
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
相关论文
共 50 条
  • [1] From Big Data to Data Science: A Multi-disciplinary Perspective
    Wu, Zhaohui
    Chin, Ooi Beng
    BIG DATA RESEARCH, 2014, 1 : 1 - 1
  • [3] An editorial of “AI + informetrics”: multi-disciplinary interactions in the era of big data
    Yi Zhang
    Chengzhi Zhang
    Philipp Mayr
    Arho Suominen
    Scientometrics, 2022, 127 : 6503 - 6507
  • [4] Multi-disciplinary data for estuarine modelling
    McLean, EJ
    Hinwood, JB
    ENVIRONMENTAL AND COASTAL HYDRAULICS: PROTECTING THE AQUATIC HABITAT, PROCEEDINGS OF THEME B, VOLS 1 & 2, 1997, 27 : 257 - 262
  • [5] The Concept of Data Utility in Health Risk Assessment: A Multi-Disciplinary Perspective
    Thran, Brandolyn H.
    Tannenbaum, Lawrence V.
    HUMAN AND ECOLOGICAL RISK ASSESSMENT, 2008, 14 (06): : 1104 - 1117
  • [6] A multi-disciplinary plan for easier access, management, and analysts of science data
    Hornstein, RS
    Miller, RE
    Hei, DJ
    Kaufmann, DE
    Lopinto, FJ
    Todd, JE
    ACTA ASTRONAUTICA, 1997, 41 (12) : 833 - 840
  • [7] An editorial of "AI plus informetrics": multi-disciplinary interactions in the era of big data
    Zhang, Yi
    Zhang, Chengzhi
    Mayr, Philipp
    Suominen, Arho
    SCIENTOMETRICS, 2022, 127 (11) : 6503 - 6507
  • [8] Multi-disciplinary simulations and computational and data grids
    Johnston, WE
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: NEW FRONTIERS AND MULTI-DISCIPLINARY APPLICATIONS, PROCEEDINGS, 2003, : 13 - 22
  • [9] Editorial overview: Sensory science and consumer perception: from a multi-disciplinary perspective
    Gomez-Corona, Carlos
    Rodrigues, Heber
    CURRENT OPINION IN FOOD SCIENCE, 2020, 33 : III - V
  • [10] Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey
    Sreerama K. Murthy
    Data Mining and Knowledge Discovery, 1998, 2 : 345 - 389