Computationally Efficient Variational Approximations for Bayesian Inverse Problems

被引:0
|
作者
Tsilifis P. [1 ]
Bilionis I. [2 ]
Katsounaros I. [3 ]
Zabaras N. [4 ]
机构
[1] Department of Mathematics, University of Southern California, Los Angeles, 90089-2532, CA
[2] School of Mechanical Engineering, Purdue University, West Lafayette, 47906-2088, IN
[3] Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, Leiden
[4] Warwick Centre for Predictive Modeling, University of Warwick, Coventry
来源
| 1600年 / American Society of Mechanical Engineers (ASME)卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Bayesian - Bayesian approaches - Computational burden - Computationally efficient - Forward modeling - Markov chain Monte Carlo - Markov Chain Monte-Carlo - Model calibration - Posterior distributions - Variational approximation;
D O I
10.1115/1.4034102
中图分类号
学科分类号
摘要
The major drawback of the Bayesian approach to model calibration is the computational burden involved in describing the posterior distribution of the unknown model parameters arising from the fact that typical Markov chain Monte Carlo (MCMC) samplers require thousands of forward model evaluations. In this work, we develop a variational Bayesian approach to model calibration which uses an information theoretic criterion to recast the posterior problem as an optimization problem. Specifically, we parameterize the posterior using the family of Gaussian mixtures and seek to minimize the information loss incurred by replacing the true posterior with an approximate one. Our approach is of particular importance in underdetermined problems with expensive forward models in which both the classical approach of minimizing a potentially regularized misfit function and MCMC are not viable options. We test our methodology on two surrogate-free examples and show that it dramatically outperforms MCMC methods. Copyright © 2016 by ASME
引用
收藏
相关论文
共 50 条
  • [1] Sparse Variational Bayesian approximations for nonlinear inverse problems: Applications in nonlinear elastography
    Franck, Isabell M.
    Koutsourelakis, P. S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 299 : 215 - 244
  • [2] Variational Bayesian Approximation methods for inverse problems
    Mohammad-Djafari, Ali
    2ND INTERNATIONAL WORKSHOP ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS (NCMIP 2012), 2012, 386
  • [3] Solving Bayesian Inverse Problems via Variational Autoencoders
    Goh, Hwan
    Sheriffdeen, Sheroze
    Wittmer, Jonathan
    Bui-Thanh, Tan
    MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 145, 2021, 145 : 386 - 424
  • [4] A variational Bayesian method to inverse problems with impulsive noise
    Jin, Bangti
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (02) : 423 - 435
  • [5] MULTILEVEL ADAPTIVE SPARSE LEJA APPROXIMATIONS FOR BAYESIAN INVERSE PROBLEMS
    Farcas, I-G
    Latz, J.
    Ullmann, E.
    Neckel, T.
    Bungartz, H-J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01): : A424 - A451
  • [6] On global normal linear approximations for nonlinear Bayesian inverse problems
    Nicholson, Ruanui
    Petra, Noemi
    Villa, Umberto
    Kaipio, Jari P.
    INVERSE PROBLEMS, 2023, 39 (05)
  • [7] Covariance-Based Rational Approximations of Fractional SPDEs for Computationally Efficient Bayesian Inference
    Bolin, David
    Simas, Alexandre B.
    Xiong, Zhen
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (01) : 64 - 74
  • [8] OPTIMAL LOW-RANK APPROXIMATIONS OF BAYESIAN LINEAR INVERSE PROBLEMS
    Spantini, Alessio
    Solonen, Antti
    Cui, Tiangang
    Martin, James
    Tenorio, Luis
    Marzouk, Youssef
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06): : A2451 - A2487
  • [9] MCMC for the Evaluation of Gaussian Approximations to Bayesian Inverse Problems in Groundwater Flow
    Iglesias, M. A.
    Law, K. J. H.
    Stuart, A. M.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 920 - 923
  • [10] GOAL-ORIENTED OPTIMAL APPROXIMATIONS OF BAYESIAN LINEAR INVERSE PROBLEMS
    Spantini, Alessio
    Cui, Tiangang
    Willcox, Karen
    Tenorio, Luis
    Marzouk, Youssef
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S167 - S196