Experimental and Numerical Based Defect Detection in a Model Combustion Chamber through Machine Learning

被引:0
|
作者
von der Haar, Henrik [1 ]
Ignatidis, Panagiotis [1 ]
Dinkelacker, Friedrich [1 ]
机构
[1] Institute of Technical Combustion, Leibniz Universität Hannover, An der Universität 1, Garbsen, 30823, Germany
关键词
Automatic defect detections - Combustion pro-cess - Combustion state - Defect detection - Down time - Internal flows - Machine-learning - Resource management - Species distributions - Support vector machines algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1 / 9
相关论文
共 50 条
  • [1] Experimental and numerical Examinations for the Detection of Defects in a Model Combustion Chamber
    von der Haar, Henrik
    Hennecke, Christoph
    Dinkelacker, Friedrich
    28 DEUTSCHER FLAMMENTAG: VERBRENNUNG UND FEUERUNG, 2017, 2017, 2302 : 445 - 456
  • [2] Machine Learning Based Wafer Defect Detection
    Ma, Yuansheng
    Wang, Feng
    Xie, Qian
    Hong, Le
    Mellmann, Joerg
    Sun, Yuyang
    Gao, Shao Wen
    Singh, Sonal
    Venkatachalam, Panneerselvam
    Word, James
    DESIGN-PROCESS-TECHNOLOGY CO-OPTIMIZATION FOR MANUFACTURABILITY XIII, 2019, 10962
  • [3] Defect Detection for 3D Through Silicon via Based on Machine Learning Approach
    Huang, Yu-Jung
    Pan, Chung-Long
    Guo, MeiHui
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2017, 9 (08) : 1175 - 1179
  • [4] Wood Defect Detection Based on Depth Extreme Learning Machine
    Yang, Yutu
    Zhou, Xiaolin
    Liu, Ying
    Hu, Zhongkang
    Ding, Fenglong
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 14
  • [5] Extreme Learning Machine Based Defect Detection for Solder Joints
    Ma, Liyong
    Xie, Wei
    Zhang, Yong
    Feng, Xijia
    JOURNAL OF INTERNET TECHNOLOGY, 2020, 21 (05): : 1535 - 1543
  • [6] Wheel Defect Detection With Machine Learning
    Krummenacher, Gabriel
    Ong, Cheng Soon
    Koller, Stefan
    Kobayashi, Seijin
    Buhmann, Joachim M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (04) : 1176 - 1187
  • [7] MACHINE LEARNING ENHANCES DEFECT DETECTION
    不详
    ADVANCED MATERIALS & PROCESSES, 2025, 183 (01):
  • [8] Experimental and numerical investigation of gaseous fuel combustion in swirl chamber
    Nemoda, S
    Bakic, V
    Oka, S
    Zivkovic, G
    Crnomarkovic, N
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (21-22) : 4623 - 4632
  • [9] EXPERIMENTAL AND NUMERICAL ANALYSIS OF SPRAY DISPERSION AND EVAPORATION IN A COMBUSTION CHAMBER
    Chrigui, M.
    Sadiki, A.
    Janicka, J.
    Hage, M.
    Dreizler, A.
    ATOMIZATION AND SPRAYS, 2009, 19 (10) : 929 - 955
  • [10] Numerical and Experimental Study of Combustion of Methane–Hydrogen Mixtures in a Model Combustion Chamber of a Gas-Turbine Power Plant
    N. I. Gurakov
    O. V. Kolomzarov
    D. V. Idrisov
    S. S. Novichkova
    L. Sh. Emirova
    V. Yu. Abrashkin
    S. S. Matveev
    S. G. Matveev
    N. I. Fokin
    N. O. Simin
    A. A. Ivanovskii
    D. S. Tarasov
    Combustion, Explosion, and Shock Waves, 2023, 59 : 137 - 144