共 12 条
- [1] Zhong S., Zeng X., Liu H., Et al., Approximate computation of Madaline sensitivity based on discrete stochastic technique, Science China: Information Science, 53, 12, pp. 2399-2414, (2010)
- [2] Rumelhart D.E., Hinton G.E., Williams R.J., Learning representations by back propagation errors, Nature, 323, 9, pp. 533-536, (1986)
- [3] Rumelhart D.E., Mcclelland J.L., Parallel Distributed Processing: Explorations in the Microstructure of Cognition, (1986)
- [4] Winter R., Widrow B., Madaline rule II: a training algorithm for neural networks, IEEE International Conference on Neural Networks, pp. 401-408, (1988)
- [5] Winter R., Madaline rule II: a new method for training networks for BNs, (1989)
- [6] Huang G.B., Zhu Q., Siew C.K., Extreme learning machine: a new learning scheme of feedforward neural networks, Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 985-990, (2004)
- [7] Huang G.B., Zhu Q., Siew C.K., Extreme learning machine: theory and applications, Neurocomputing, 70, 1-3, pp. 489-501, (2006)
- [8] Hornik K., Stinchcombea M., White H., Miltilayer feedforward networks are universal approximators, Neural Networks, 2, 5, pp. 359-366, (1989)
- [9] Martin T.H., Howard B.D., Mark H.B., Neural Network Design, pp. 24-27, (2002)
- [10] Reed R., Pruning algorithms-a survey, IEEE Transactions on Neural Networks, 4, 5, pp. 740-747, (1993)