Evaluation of thermal shock resistance of BNNTs/Si3N4 composites based on first heat shock factor

被引:0
|
作者
Wang S. [1 ]
Wang G. [1 ]
Yang X. [1 ]
Wang Y. [1 ]
Qiao Y. [1 ]
Yang L. [1 ]
机构
[1] School of Mechanical Engineering, University of Jinan, Jinan
来源
Wang, Shouren (sherman0158@tom.com) | 1600年 / Beijing University of Aeronautics and Astronautics (BUAA)卷 / 34期
关键词
BNNTs; Ceramic; Composites; First heat shock factor; Si[!sub]3[!/sub]N[!sub]4[!/sub;
D O I
10.13801/j.cnki.fhclxb.20161019.001
中图分类号
学科分类号
摘要
The first heat shock factor model of BNNTs reinforced ceramic composites was constructed based on Kingery thermal shock theory. The BNNTs/Si3N4 composites with mass fractions of 0.5wt%, 1.0wt%, 1.5wt% and 2.0wt% were prepared by hot pressed sintering process. The thermal shock resistance of the BNNTs/Si3N4 composites, including bending strength after thermal shock and critical fracture temperature difference, was tested by water bath quenching and three point bending method. The first heat shock factor model is verified by the thermal shock resistance test, which indicates that the thermal shock performance of BNNTs/Si3N4 is enhanced by the BNNTs. BNNTs which are distributed on the grain boundary make the crack pinned and deflected, increasing the crack propagation resistance. Moreover, the hole of the nanotube changes the crack propagation path, improving the fracture resistance and thermal shock resistance of the BNNTs/Si3N4 composites. © 2017,Chinese Society for Composite Materials. All right reserved.
引用
收藏
页码:1575 / 1581
页数:6
相关论文
共 15 条
  • [1] Tamas C., Dusan N., Jan D., Et al., Nanoindentation induced deformation anisotropy in β-Si<sub>3</sub>N<sub>4</sub> ceramic crystals, Journal of the European Ceramic Society, 36, 12, pp. 3059-3066, (2016)
  • [2] Wang C., Wang H.J., Qiao R.Q., Et al., Fabrication and thermal shock resistance of β-Si<sub>3</sub>N<sub>4</sub>-based environmental barrier coating on porous Si<sub>3</sub>N<sub>4</sub> ceramic, Ceramics International, 42, 12, pp. 14222-14227, (2016)
  • [3] Kwangjin J., Junichi T., Motoyuki I., Et al., Fabrication of Si<sub>3</sub>N<sub>4</sub> ceramics by post-reaction sintering using Si-Y<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> nanocomposite particles prepared by mechanical treatment, Ceramics International, 42, 10, pp. 11554-11561, (2016)
  • [4] Yu H.H., Wang S.R., Yang L.Y., Crack propagation resistance behavior of Si<sub>3</sub>N<sub>4</sub> composites reinforced by BN nanotubes, Acta Materiae Compositae Sinica, 29, 6, pp. 152-158, (2012)
  • [5] Wu N.X., Chen Z.L., Lao D.H., Lamb wave propagation characteristics in the silicon nitride ceramic blade and its friction material coating, Journal of Ceramics, 1, pp. 83-87, (2015)
  • [6] Hu H.L., Yao D.X., Xia Y.F., Et al., Fabrication and mechanical properties of SiC reinforced reaction-bonded silicon nitride based ceramics, Ceramics International, 40, 3, pp. 4739-4743, (2014)
  • [7] Zhao Y.X., Wang M.R., Cao J., Et al., Brazing TC<sub>4</sub> alloy to Si<sub>3</sub>N<sub>4</sub> ceramic using nano-Si<sub>3</sub>N<sub>4</sub> reinforced AgCu composite filler, Materials & Design, 76, 5, pp. 40-46, (2015)
  • [8] Hui M., Zhao G.K., Liu G.X., Et al., Effect of pore size distribution on the mechanical performance of carbon foams reinforced by in situ grown Si<sub>3</sub>N<sub>4</sub> whiskers, Journal of the European Ceramic Society, 35, 16, pp. 4431-4435, (2015)
  • [9] Yu H.H., Wang S.R., Yang L.Y., R-curve behavior of Si<sub>3</sub>N<sub>4</sub>/BNNT composites, Applied Composites Materials, 20, 5, pp. 947-960, (2013)
  • [10] Du M., Bi J.Q., Wang W.L., Et al., Fabrication and mechanical properties of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>-BNNPs and SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>-BNNTs composites, Materials Science and Engineering: A, 530, 15, pp. 669-674, (2011)