Ground state of the singly ionized oxygen vacancy in rutile TiO2

被引:0
|
作者
机构
[1] Brant, A.T.
[2] Giles, N.C.
[3] 2,Yang, Shan
[4] 3,Sarker, M.A.R.
[5] Watauchi, S.
[6] Nagao, M.
[7] Tanaka, I.
[8] Tryk, D.A.
[9] Manivannan, A.
[10] Halliburton, L.E.
来源
Halliburton, L.E. (larry.halliburton@mail.wvu.edu) | 1600年 / American Institute of Physics Inc.卷 / 114期
关键词
Results from electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) experiments are used to establish the model for the ground state of the singly ionized oxygen vacancy in the interior of bulk rutile TiO2 crystals. Hyperfine from 47Ti and 49Ti nuclei show that the unpaired electron in this S=1/2 defect is localized on one titanium ion adjacent to the oxygen vacancy (i.e; the spin is not shared by two titanium ions). These defects are formed at low temperature (∼35K) in as-grown oxidized crystals when sub-band-gap 442nm laser light converts doubly ionized nonparamagnetic oxygen vacancies to the singly ionized paramagnetic charge state. The g matrix is obtained from EPR spectra and the 47Ti and 49Ti hyperfine and nuclear electric quadrupole matrices (A and Q) are obtained from ENDOR spectra. Principal values of the 47Ti and 49Ti hyperfine matrices are 64.54; 11.57; and 33.34MHz. All the matrices have a principal axis along the [001] direction. In the basal plane; principal axes of the hyperfine and quadrupole matrices also coincide. The principal axes of the g matrix in the basal plane; however; deviate significantly from those of the A and Q matrices; thus indicating mixing of d orbitals due to the low symmetry at the Ti3+ ion site and participation of excited-state orbitals. © 2013 AIP Publishing LLC;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [1] Ground state of the singly ionized oxygen vacancy in rutile TiO2
    Brant, A. T.
    Giles, N. C.
    Yang, Shan
    Sarker, M. A. R.
    Watauchi, S.
    Nagao, M.
    Tanaka, I.
    Tryk, D. A.
    Manivannan, A.
    Halliburton, L. E.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (11)
  • [2] Triplet ground state of the neutral oxygen-vacancy donor in rutile TiO2
    Brant, A. T.
    Golden, E. M.
    Giles, N. C.
    Yang, Shan
    Sarker, M. A. R.
    Watauchi, S.
    Nagao, M.
    Tanaka, I.
    Tryk, D. A.
    Manivannan, A.
    Halliburton, L. E.
    PHYSICAL REVIEW B, 2014, 89 (11):
  • [3] Localized states induced by an oxygen vacancy in rutile TiO2
    Lin, Chungwei
    Shin, Donghan
    Demkov, Alexander A.
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (22)
  • [4] The Role of Oxygen Vacancy in Anatase to Rutile Transformation of TiO2
    Tian, Zhaobo
    Du, Songmo
    Cheng, Xu
    Zhang, Jie
    Li, Fei
    Chen, Zhanglin
    Lv, You
    Zhu, Yuan
    Liu, Guanghua
    CRYSTAL GROWTH & DESIGN, 2022, 22 (12) : 6852 - 6856
  • [5] Localized states induced by an oxygen vacancy in rutile TiO2
    20152500956844
    1600, American Institute of Physics Inc. (117):
  • [6] Rutile TiO2 Nanoparticles with Oxygen Vacancy for Photocatalytic Nitrogen Fixation
    Liu, Qing-Yu
    Wang, Hao-Dong
    Tang, Rui
    Cheng, Quan
    Yuan, Yong-Jun
    ACS APPLIED NANO MATERIALS, 2021, 4 (09) : 8674 - 8679
  • [7] ELECTRONIC-STRUCTURE OF A SINGLE OXYGEN VACANCY IN RUTILE TIO2
    TIT, N
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1993, 15 (11): : 1405 - 1414
  • [8] Effects of Oxygen Vacancy on the Adsorption of Formaldehyde on Rutile TiO2(110) Surface
    Liu, Li-ming
    Zhao, Jin
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2017, 30 (03) : 312 - 318
  • [9] Structure and Stability of Oxygen Vacancy Aggregates in Reduced Anatase and Rutile TiO2
    Selloni, Annabella
    Lee, Taehun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (01): : 627 - 634
  • [10] Oxygen Vacancy-Induced Room Temperature Ferromagnetism in Rutile TiO2
    H. Liu
    G. P. Li
    Q. L. Lin
    D. J. E
    X. D. Gao
    X. B. Wei
    X. D. Pan
    S. X. Zhang
    J. J. Ding
    W. Lan
    Journal of Superconductivity and Novel Magnetism, 2019, 32 : 3557 - 3562