共 14 条
- [1] Sharma S., Parmar A., Kori S., Et al., PLGA-based nanoparticles: a new paradigm in biomedical applications, TrAC Trends Anal. Chem., 80, pp. 30-40, (2016)
- [2] Farah S., Anderson D., Langer R., Physical and mechanical properties of PLA, and their functions in widespread applications-a comprehensive review, Adv. Drug Deliv. Rev., 107, pp. 367-392, (2016)
- [3] Breche Q., Chagnon G., Machado G., Et al., Mechanical behaviour's evolution of a PLA-b-PEG-b-PLA triblock copolymer during hydrolytic degradation, J. Mech. Behav. Biomed. Mater., 60, pp. 288-300, (2016)
- [4] Tsuji H., In vitro hydrolysis of blends from enantiomeric poly (lactide)s Part 1 Well-stereo-complexed blend and non-blended films, Polymer, 41, pp. 3621-3630, (2000)
- [5] Duek E.A.R., Zavaglia C.A.C., Belangero W.D., In vitro study of poly(lactic acid) pin degradation, Polymer, 40, pp. 6465-6473, (1999)
- [6] Gleadall A., Pan J., Anton K.A., An atomic finite element model for biodegradable polymers. Part2. a Model for Change in Young's Modulus Due to Polymer Chain scission, J. Mech. Behav. Biomed. Mater., 51, pp. 237-247, (2015)
- [7] Samami H., Pan J., A constitutive law for degrading bioresorbable polymers, J. Mech. Behav. Biomed. Mater., 59, pp. 430-445, (2016)
- [8] Shirazi N.R., Ronan W., Rochev Y., Et al., Modelling the degradation and elastic properties of poly(lactic-co-glycolic acid) films and regular open-cell tissue engineering scaffolds, J. Mech. Behav. Biomed. Mater., 54, pp. 48-59, (2016)
- [9] Breche Q., Chagnon G., Machado G., Et al., A non-linear viscoelastic model to describe the mechanical behavior's evolution of biodegradable polymers during hydrolytic degradation, Polym. Degrad. Stab., 131, pp. 145-156, (2016)
- [10] Ward I.M., Hadley D.W., An Introduction to the Mechanical Properties of Solid Polymers, (1993)