Influence on fluid flow and heat transfer of a bionic fin in plate-fin heat exchanger

被引:1
|
作者
Liu, Jingcheng [1 ]
Zhang, Shuyou [1 ]
Zhou, Zhiyong [2 ]
机构
[1] The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou,310027, China
[2] Design Institute of National Technology Research Center, Hangzhou Hangyang Co., Ltd., Hangzhou,310004, China
关键词
Fins (heat exchange) - Plates (structural components) - Turbulence - Heat transfer;
D O I
10.3901/JME.2015.12.161
中图分类号
学科分类号
摘要
The effect of fluid flow and heat transfer caused by fins in plate-fin heat exchanger is investigated, and then a new kind of fins, called shark gill fin, is proposed. The main functions of this kind of fins include enlarging fluid turbulence effect, changing flow direction in the same layer of fins, promoting fluid flow among channels, decreasing fluid temperature difference in the same cross-section and finally promoting heat exchange efficiency. The temperature, velocity, pressure and turbulence field under twelve conditions are analyzed by changing cocking-up structure and opening size in shark gill fin and finally, the distribution of fluid flow, temperature, dynamic pressure and turbulent intensity under steady state conditions are achieved. It can be concluded that when the opening size is 1 mm, the fluid velocity difference can reach by 47.38%, the temperature difference can reach by 0.7 ℃/m, the turbulent intensity difference can reach by 0.816%. When cocking-up structure is 10°, the fluid turbulent intensity can reach by 3.162%, the temperature difference can reach by 1 ℃/m. The results demonstrate that, in view of fluid flow, the effect of opening size is more important than cocking-up degree while, in view of temperature field, the opening size is less important than the cocking-up degree, besides, the cocking-up degree has less effect on fluid velocity and dynamic pressure. ©, 2015, Journal of Mechanical Engineering. All right reserved.
引用
收藏
页码:161 / 169
相关论文
共 50 条
  • [1] Influence of fin arrangement on fluid flow and heat transfer in the inlet of a plate-fin heat exchanger
    Liu, Jing-cheng
    Zhang, Shu-you
    Zhao, Xin-yue
    Yi, Guo-dong
    Zhou, Zhi-yong
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2015, 16 (04): : 279 - 294
  • [2] Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger
    Kim, SY
    Paek, JW
    Kang, BH
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2000, 122 (03): : 572 - 578
  • [3] NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER IN PLATE-FIN HEAT TRANSFER EXCHANGER OF HTGR
    Peng, Wei
    Chen, Tao
    Yang, Xiaoyong
    Zhao, Gang
    Wang, Jie
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, 2016, VOL 3, 2016,
  • [4] Flow and heat transfer analyses of a plate-fin heat exchanger in an HTGR
    Chen, Tao
    Wang, Jie
    Peng, Wei
    ANNALS OF NUCLEAR ENERGY, 2017, 108 : 316 - 328
  • [5] Fluid Flow Distribution and Heat Transfer in Plate-Fin Heat Exchangers
    Zhang, Zhe
    Mehendale, Sunil
    Tian, Jinjin
    Li, Yanzhong
    HEAT TRANSFER ENGINEERING, 2015, 36 (09) : 806 - 819
  • [6] The LES and DNS simulations of heat transfer and fluid flow in a plate-fin heat exchanger with vortex generators
    Sohankar, A
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 2004, 28 (B4): : 443 - 452
  • [7] Evaporation heat transfer and flow characteristics of vertical upward flow in a plate-fin heat exchanger
    Jige, Daisuke
    Sugihara, Kota
    Inoue, Norihiro
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2022, 133 : 165 - 171
  • [8] Experimental determination of the heat transfer coefficient of a plate-fin heat exchanger
    De Paepe, M
    Willems, A
    Zenner, A
    HEAT TRANSFER ENGINEERING, 2005, 26 (07) : 29 - 35
  • [9] Fin effects in flow channels of plate-fin compact heat exchanger cores
    Manglik R.M.
    Huzayyin O.A.
    Jog M.A.
    Journal of Thermal Science and Engineering Applications, 2011, 3 (04)
  • [10] Analysis of channel structure improvement and its influence on fluid flow in plate-fin heat exchanger
    Zhang, Shuyou, 1600, Chinese Mechanical Engineering Society (50):