An Iterative Algorithm for Numerical Solution of Nonlinear Fractional Differential Equation using Legendre Wavelet Method

被引:0
|
作者
Thakur, Bharti [1 ]
Gupta, Sandipan [2 ]
机构
[1] Department of Mathematics, Eternal University, Baru Sahib,173101, India
[2] Department of Mathematics, Eternal University, Baru Sahib,173101, India
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:380 / 389
相关论文
共 50 条
  • [1] SOLUTION OF LINEAR AND NONLINEAR FRACTIONAL ORDER DIFFERENTIAL EQUATION USING LEGENDRE WAVELET OPERATIONAL MATRIX
    Chandel, Raghvendra Singh
    Singh, Amardeep
    Chouhan, Devendra
    JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 6 (05): : 32 - 42
  • [2] NUMERICAL SOLUTION OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS USING HAAR WAVELET COLLOCATION METHOD
    Deshi, A. B.
    Gudodagi, G. A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (06)
  • [3] Numerical solution of fuzzy fractional integro-differential equation via two-dimensional Legendre Wavelet method
    Shabestari, Mohammad Rasul Mastani
    Ezzati, Reza
    Allahviranloo, Tofigh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (04) : 2453 - 2465
  • [4] Numerical Solution of Fuzzy Fractional Differential Equation By Haar Wavelet
    Khakrangin, Sakineh
    Allahviranloo, Tofigh
    Mikaeilvand, Nasser
    Abbasbandy, Saeid
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2021, 16 (01): : 268 - 288
  • [5] Iterative algorithm and estimation of solution for a fractional order differential equation
    Wu, Jing
    Zhang, Xinguang
    Liu, Lishan
    Wu, Yonghong
    Wiwatanapataphee, Benchawan
    BOUNDARY VALUE PROBLEMS, 2016,
  • [6] Iterative algorithm and estimation of solution for a fractional order differential equation
    Jing Wu
    Xinguang Zhang
    Lishan Liu
    Yonghong Wu
    Benchawan Wiwatanapataphee
    Boundary Value Problems, 2016
  • [7] Euler Wavelet Method as a Numerical Approach for the Solution of Nonlinear Systems of Fractional Differential Equations
    Polat, Sadiye Nergis Tural
    Dincel, Arzu Turan
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [8] Numerical solution of nonlinear partial differential equations using shifted Legendre collocation method
    Abbassi, Passant K.
    Fathy, Mohamed
    Elbarkoki, R. A.
    Abdelgaber, K. M.
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [9] Legendre wavelet method for fractional delay differential equations
    Yuttanan, Boonrod
    Razzaghi, Mohsen
    Vo, Thieu N.
    APPLIED NUMERICAL MATHEMATICS, 2021, 168 : 127 - 142
  • [10] The Legendre wavelet method for solving fractional differential equations
    Rehman, Mujeeb Ur
    Khan, Rahmat Ali
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) : 4163 - 4173