共 83 条
- [1] Gurson A.L., Continuum theory of ductile rupture by void nucleation and growth. Part I: Yield Criteria and Flow Rules for Porous Ductile media, Journal of Engineering Materials and Technology, 99, pp. 2-15, (1977)
- [2] Tvergaard V., Needleman A., Analysis of cup-cone fracture in a round tensile bar, ACTA Metallurgica, 32, pp. 57-169, (1984)
- [3] Zhan S., Wang T.C., Han X., A micromechanical damage theory for brittle materials with small cracks, Fatigue & Fracture of Engineering Materials & Structures, 21, pp. 1337-1349, (1998)
- [4] Caballero A., Carol I., Lopez C.M., A meso-level approach to the 3D numerical analysis of cracking and fracture of concrete materials, Fatigue & Fracture of Engineering Materials & Structures, 29, pp. 979-991, (2006)
- [5] Aliha M.M., Ayatollahi M.R., Brittle fracture evaluation of a fine grain cement mortar in combined tensile-shear deformation, Fatigue & Fracture of Engineering Materials & Structures, 32, pp. 987-994, (2009)
- [6] Kim S.M., Abu Al-Rub R.K., Meso-scale computational modeling of the plastic-damage response of cementitious composites, Cement and Concrete Research, 41, pp. 339-358, (2011)
- [7] Trivedi N., Singh R.K., Chattopadhyay J., Size independent fracture energy evaluation for plain cement concrete, Fatigue & Fracture of Engineering Materials & Structures, 38, pp. 789-798, (2015)
- [8] Kosteski L.E., Riera J.D., Iturrioz I., Et al., Assessment of empirical formulas for prediction of the effects of projectile impact on concrete structures, Fatigue & Fracture of Engineering Materials & Structures, 38, pp. 948-959, (2015)
- [9] Yan Y., Ren Q., Xia N., Et al., Artificial neural network approach to predict the fracture parameters of the size effect model for concrete, Fatigue & Fracture of Engineering Materials & Structures, 38, 11, pp. 1347-1358, (2015)
- [10] Katcoff Z.C., Graham-Brady G., Et al., Modeling dynamic brittle behavior of materials with circular flaws or pores, International Journal of Solids and Structures, 51, pp. 754-766, (2014)