Local neighborhood embedding for unsupervised nonlinear dimension reduction

被引:6
|
作者
Zhen, Liangli [1 ]
Peng, Xi [1 ]
Peng, Dezhong [1 ]
机构
[1] Machine Intelligence Laboratory, College of Computer Science, Sichuan University, 610065, China
关键词
D O I
10.4304/jsw.8.2.410-417
中图分类号
学科分类号
摘要
引用
收藏
页码:410 / 417
相关论文
共 50 条
  • [1] Neighborhood Balance Embedding for Unsupervised Dimensionality Reduction
    Sun, Mingming
    Liu, Chuancai
    Yang, Jingyu
    [J]. PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2, 2009, : 123 - 126
  • [2] Geometrically local embedding in manifolds for dimension reduction
    Ge, Shuzhi Sam
    He, Hongsheng
    Shen, Chengyao
    [J]. PATTERN RECOGNITION, 2012, 45 (04) : 1455 - 1470
  • [3] Nonlinear Dimensionality Reduction with Local Spline Embedding
    Xiang, Shiming
    Nie, Feiping
    Zhang, Changshui
    Zhang, Chunxia
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (09) : 1285 - 1298
  • [4] Flexible Manifold Embedding: A Framework for Semi-Supervised and Unsupervised Dimension Reduction
    Nie, Feiping
    Xu, Dong
    Tsang, Ivor Wai-Hung
    Zhang, Changshui
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (07) : 1921 - 1932
  • [5] Local Deep-Feature Alignment for Unsupervised Dimension Reduction
    Zhang, Jian
    Yu, Jun
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (05) : 2420 - 2432
  • [6] Study on Orthogonal Tensor Sparse Neighborhood Preserving Embedding Algorithm for Dimension Reduction
    Qi, Mingming
    Zhang, Yanqiu
    Lv, Dongdong
    Yuan, Shuhan
    Lu, Hai
    Xi, Xin
    [J]. PROCEEDINGS OF 2014 IEEE WORKSHOP ON ADVANCED RESEARCH AND TECHNOLOGY IN INDUSTRY APPLICATIONS (WARTIA), 2014, : 1392 - 1396
  • [7] Supervised dimension reduction by local neighborhood optimization for image processing
    Zhao L.
    Wang H.
    Wang J.
    [J]. Recent Patents on Engineering, 2019, 13 (04) : 334 - 337
  • [8] Variance reduction with neighborhood smoothing for local intrinsic dimension estimation
    Carter, Kevin M.
    Hero, Alfred O., III
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3917 - 3920
  • [9] Nonlinear dimension reduction of FMRI data: The Laplacian embedding approach
    Thirion, B
    Faugeras, O
    [J]. 2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 372 - 375
  • [10] Nonlinear Dimension Reduction by Local Multidimensional Scaling
    Ma, Yuzhe
    He, Kun
    Hopcroft, John
    Shi, Pan
    [J]. FRONTIERS IN ALGORITHMICS, FAW 2016, 2016, 9711 : 158 - 171