Enhanced high-temperature energy storage performance in all-organic dielectric films through synergistic crosslinking of chemical and physical interaction

被引:0
|
作者
Dong, Xianhui [1 ]
Wang, Yan [1 ,1 ]
Cao, Yutong [2 ]
Li, Na [1 ]
Fu, Jiabin [1 ]
Yu, Junrong [1 ]
Hu, Zuming [1 ]
机构
[1] State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai,201620, China
[2] Sinochem International Corporation, Shanghai,200126, China
关键词
Elastomers - Electrostatic devices - Electrostatic discharge - Hydrolysis - Organometallics - Photodissociation - Polymer films;
D O I
10.1016/j.cej.2024.157312
中图分类号
学科分类号
摘要
Advanced electronic devices and energy systems urgently require high-temperature polymer dielectrics that can offer both high discharge energy density and energy storage efficiency. However, the capacitive properties of most polymers sharply deteriorate at elevated temperatures, due to the significant rise in leakage current density and energy loss. Herein, a new design approach is adopted to fabricate high-temperature polyetherimide (PEI) dielectrics with chemical and physical cooperative crosslinking networks, the dual-crosslinked PEI dielectrics are prepared through amine crosslinking agent and the electrostatic interaction of oppositely charged phenyl groups between triptycene (TE) and PEI chain segments. Benefiting from the increased crosslinking sites, the dual-crosslinked PEI films achieve the simultaneously enhancement in Tg, modulus and bandgap compared to un-crosslinked and single-crosslinked polymers. Meanwhile, the PEI with dual-crosslinked network displays higher chain packing density, effectively reducing the mean motion pathways of charge carriers and the conduction loss inside polymer dielectric. Consequently, the dual-crosslinked PEI containing 0.25 wt% TE delivers an outstanding discharge energy density of 2.69 J/cm3 and retains excellent cyclability after 100,000 charge–discharge cycles at 200 ℃. Additionally, finite element analysis and molecular dynamics simulation further confirm that less Joule heat and tighter chain structure are formed in the dual-crosslinked polymer dielectric. This research offers a novel methodology to prepare high-performance polymer dielectrics for high-temperature applications. © 2024 Elsevier B.V.
引用
下载
收藏
相关论文
共 50 条
  • [1] Scalable Ultrathin All-Organic Polymer Dielectric Films for High-Temperature Capacitive Energy Storage
    Ren, Weibin
    Yang, Minzheng
    Zhou, Le
    Fan, Youjun
    He, Shan
    Pan, Jiayu
    Tang, Tongxiang
    Xiao, Yao
    Nan, Ce-Wen
    Shen, Yang
    ADVANCED MATERIALS, 2022, 34 (47)
  • [2] Achieving synergistic improvement in dielectric and energy storage properties at high-temperature of all-organic composites via physical electrostatic effect
    Shang, Yanan
    Feng, Yu
    Meng, Zhaotong
    Zhang, Changhai
    Zhang, Tiandong
    Chi, Qingguo
    MATERIALS HORIZONS, 2024, 11 (06) : 1528 - 1538
  • [3] High-temperature dielectric polymer composite films of all-organic PVDF/ABS with excellent energy storage performance and stability
    Zhang, Ranran
    Li, Lili
    Long, Shaojun
    Wang, Ping
    Wen, Fei
    Yang, Junzhou
    Wang, Gaofeng
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (09) : 3480 - 3488
  • [4] Enhanced High-Temperature Energy Storage Performance of All-Organic Composite Dielectric via Constructing Fiber-Reinforced Structure
    Mengjia Feng
    Yu Feng
    Changhai Zhang
    Tiandong Zhang
    Xu Tong
    Qiang Gao
    Qingguo Chen
    Qingguo Chi
    Energy&EnvironmentalMaterials, 2024, 7 (02) : 303 - 311
  • [5] Enhanced High-Temperature Energy Storage Performance of All-Organic Composite Dielectric via Constructing Fiber-Reinforced Structure
    Feng, Mengjia
    Feng, Yu
    Zhang, Changhai
    Zhang, Tiandong
    Tong, Xu
    Gao, Qiang
    Chen, Qingguo
    Chi, Qingguo
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (02)
  • [6] Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage
    Yuan, Chao
    Zhou, Yao
    Zhu, Yujie
    Liang, Jiajie
    Wang, Shaojie
    Peng, Simin
    Li, Yushu
    Cheng, Sang
    Yang, Mingcong
    Hu, Jun
    Zhang, Bo
    Zeng, Rong
    He, Jinliang
    Li, Qi
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [7] Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage
    Chao Yuan
    Yao Zhou
    Yujie Zhu
    Jiajie Liang
    Shaojie Wang
    Simin Peng
    Yushu Li
    Sang Cheng
    Mingcong Yang
    Jun Hu
    Bo Zhang
    Rong Zeng
    Jinliang He
    Qi Li
    Nature Communications, 11
  • [8] All-organic ArPTU/PEI composite dielectric films with high-temperature resistance and high energy-storage density
    Zhang, Yonghao
    Guo, Yan
    Liu, Yang
    Shi, Zhongqi
    Liu, Wenfeng
    Su, Jinzhan
    Chen, Guohua
    Zhou, Di
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (12) : 4426 - 4432
  • [9] High-temperature all-organic energy storage dielectric with the performance of self-adjusting electric field distribution
    Liu, Guang
    Feng, Yu
    Zhang, Tiandong
    Zhang, Changhai
    Chi, Qingguo
    Zhang, Yongquan
    Zhang, Yue
    Lei, Qingquan
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (30) : 16384 - 16394
  • [10] Enhancing high-temperature energy storage in all-organic composites through the polyfluorine effect
    Wang, Jian
    Zheng, Yingying
    Peng, Biyun
    Zhang, Yifei
    Gong, Honghong
    Liang, Sen
    Zhou, Wenying
    Xie, Yunchuan
    Journal of Energy Storage, 2025, 112