Core-shell structure and high rate performance of Ce-doped Li4Ti5O12 for lithium-ion battery anode materials

被引:0
|
作者
Shen, Long [1 ]
He, Zuming [1 ]
Lin, Kai [1 ]
Su, Jiangbin [1 ]
Yi, Jun [1 ]
Chen, Longlong [1 ]
Xia, Yongmei [2 ]
机构
[1] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213164, Peoples R China
[2] Jiangsu Univ Technol, Sch Mat Engn, Changzhou 213001, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batterys; Ce-doped; Adulterant material; Carbon spheres; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIALS; CARBON; STRATEGY; ULTRAHIGH; DIFFUSION; NANOWIRES; GRAPHENE; OXIDE;
D O I
10.1016/j.jelechem.2024.118725
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Lithium titanate (LTO) can be a very promising anode material for lithium-ion batteries (LSBs) due to its inherent ability to inhibit the growth of lithium dendrites as well as its unique "zero-strain" properties. Unfortunately, the low electronic conductivity of LTO leads to serious shortcomings in higher electrochemical demands. In this work, the Ce3+-doped C@Li4Ti5-xCexO12 (x = 0, 0.1, 0.15 and 0.2) anode materials synthesized by the hydro- thermal method using carbon spheres as templates showed more significant improvement in both structural and electrochemical properties. The results demonstrate that electronic conductivity, lithium-ion diffusion rate, discharge specific capacity, discharge rate capability, and significant improvement stability of C@Li4Ti5-xCexO12 (x = 0.1, 0.15 and 0.2) electrodes. Among them, C@Li 4 Ti 4.85 Ce 0.15 O 12 electrode exhibits the highest initial discharge specific capacity (250.86 mAh/g) at 0.1C, which is 1.28-fold that of C@ Li4Ti5O12 (195.94 mAh/g), and initial discharge capacity from 205.96 mAh/g to 170.39 mAh/g after 500 cycles, corresponding to 82.7 % of the initial stable discharge capacity. The outstanding performance of C@Li 4 Ti 4.85 Ce 0.15 O 12 can be attributed to the lower interfacial impedance, higher electronic conductivity, high oxygen vacancy concentration, and moderate amount of Ce3+ doping can enhance the electrochemical activity. In addition, carbon sphere surface defects shown to be effective in improving lithium-ion storage. This work demonstrates that Ce3+ doping is an effective method to improve the electrochemical performance of LTOs and provides a more effective guide for designing and optimizing anode electrode materials for lithium-ion batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Solid-state synthesis and electrochemical performance of Ce-doped Li4Ti5O12 anode materials for lithium-ion batteries
    Zhou, T. P.
    Feng, X. Y.
    Guo, X.
    Wu, W. W.
    Cheng, S.
    Xiang, H. F.
    ELECTROCHIMICA ACTA, 2015, 174 : 369 - 375
  • [2] Ru-doped Li4Ti5O12 anode materials for high rate lithium-ion batteries
    Wang, Wei
    Wang, Hualing
    Wang, Shubo
    Hu, Yuejiao
    Tian, Qixiang
    Jiao, Shuqiang
    JOURNAL OF POWER SOURCES, 2013, 228 : 244 - 249
  • [3] In Situ Synthesis of Core-Shell Li4Ti5O12 @ Polyaniline Composites with Enhanced Rate Performance for Lithium-ion Battery Anodes
    Yani Hui
    Liyun Cao
    Zhanwei Xu
    Jianfeng Huang
    Haibo Ouyang
    Jiayin Li
    Hailing Hu
    Journal of Materials Science & Technology, 2017, 33 (03) : 231 - 238
  • [4] In Situ Synthesis of Core-Shell Li4Ti5O12 @ Polyaniline Composites with Enhanced Rate Performance for Lithium-ion Battery Anodes
    Hui, Yani
    Cao, Liyun
    Xu, Zhanwei
    Huang, Jianfeng
    Ouyang, Haibo
    Li, Jiayin
    Hu, Hailing
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2017, 33 (03) : 231 - 238
  • [5] Enhanced electrochemical performance of core-shell Li4Ti5O12/PTh as advanced anode for rechargeable lithium-ion batteries
    Xu, Dong
    Wang, Peifeng
    Yang, Rui
    CERAMICS INTERNATIONAL, 2017, 43 (10) : 7600 - 7606
  • [6] Structure and electrochemical properties of Sc3+-doped Li4Ti5O12 as anode materials for lithium-ion battery
    Yang, Shuang-Yuan
    Yuan, Jing
    Zhu, Yan-Rong
    Yi, Ting-Feng
    Xie, Ying
    CERAMICS INTERNATIONAL, 2015, 41 (05) : 7073 - 7079
  • [7] High Rate Capability of Nd-Doped Li4Ti5O12 as an Effective Anode Material for Lithium-Ion Battery
    Zhang, Qianyu
    Li, Xi
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (06): : 7816 - 7824
  • [8] Synthesis and electrochemical properties of Li4Ti5O12/Ce as an anode material for high rate lithium ion battery
    Cheng, Chongling
    Liu, Hongjiang
    Xue, Xin
    Cao, Hui
    Liu, Lili
    Shi, Liyi
    ADVANCED RESEARCH ON ENERGY, CHEMISTRY AND MATERIALS APPLICATION, 2014, 848 : 18 - +
  • [9] Structure and high rate performance of Ni2+ doped Li4Ti5O12 for lithium ion battery
    Lin, Chunfu
    Lai, Man On
    Lu, Li
    Zhou, Henghui
    Xin, Yuelong
    JOURNAL OF POWER SOURCES, 2013, 244 : 272 - 279
  • [10] High performance Li4Ti5O12 material as anode for lithium-ion batteries
    Wang, Jie
    Zhao, Hailei
    Wen, Yeting
    Xie, Jingying
    Xia, Qing
    Zhang, Tianhou
    Zeng, Zhipeng
    Du, Xuefei
    ELECTROCHIMICA ACTA, 2013, 113 : 679 - 685