Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time

被引:0
|
作者
Bhattacharya, Sayan [1 ]
Kiss, Peter [2 ]
Urak, Thatchaphol saran [3 ]
Wajc, David [4 ]
机构
[1] Univ Warwick, Coventry, England
[2] Univ Warwick, Dept Comp Sci, Coventry, England
[3] Univ Michigan, Ann Arbor, MI USA
[4] Technion Israel Inst Technol, Haifa, Israel
基金
英国工程与自然科学研究理事会;
关键词
Dynamic algorithms; approximate matching; MINIMUM VERTEX COVER; MAXIMUM; ALGORITHMS;
D O I
10.1145/3679009
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present dynamic algorithms with polylogarithmic update time for estimating the size of the maximum matching of a graph undergoing edge insertions and deletions with approximation ratio strictly better than 2. Specifically, we obtain a 1+ root 21 + & varepsilon; approximate to 1.707+& varepsilon; approximation in bipartite graphs and a 1.973+& varepsilon; approximation in general graphs. We thus answer in the affirmative the value version of the major open question repeatedly asked in the dynamic graph algorithms literature. Our randomized algorithms' approximation and worst-case update time bounds both hold w.h.p. against adaptive adversaries. Our algorithms are based on simulating new two-pass streaming matching algorithms in the dynamic setting. Our key new idea is to invoke the recent sublinear-time matching algorithm of Behnezhad (FOCS'21) in a white-box manner to efficiently simulate the second pass of our streaming algorithms, while bypassing the well-known vertex-update barrier.
引用
收藏
页数:32
相关论文
共 47 条
  • [1] Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time
    Bhattacharya, Sayan
    Kiss, Peter
    Saranurak, Thatchaphol
    Wajc, David
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 100 - 128
  • [2] A Better-Than-2 Approximation for Weighted Tree Augmentation
    Traub, Vera
    Zenklusen, Rico
    2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 1 - 12
  • [3] Fully Dynamic Matching: Beating 2-Approximation in Δε Update Time
    Behnezhad, Soheil
    Lacki, Jakub
    Mirrokni, Vahab
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 2492 - 2508
  • [4] Fully Dynamic Matching: Beating 2-Approximation in Δε Update Time
    Behnezhad, Soheil
    Lacki, Jakub
    Mirrokni, Vahab
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 2492 - 2508
  • [5] Fully Dynamic Approximation of LIS in Polylogarithmic Time
    Gawrychowski, Pawel
    Janczewski, Wojciech
    STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2021, : 654 - 667
  • [6] Fully Dynamic Matching: (2-√2)-Approximation in Polylog Update Time
    Azarmehr, Amir
    Behnezhad, Soheil
    Roghani, Mohammad
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 3040 - 3061
  • [7] Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time
    Banihashem, Kiarash
    Biabani, Leyla
    Goudarzi, Samira
    Hajiaghayi, MohammadTaghi
    Jabbarzade, Peyman
    Monemizadeh, Morteza
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [8] Fully Dynamic Maximal Independent Set in Polylogarithmic Update Time
    Behnezhad, Soheil
    Derakhshan, Mahsa
    Hajiaghayi, MohammadTaghi
    Stein, Cliff
    Sudan, Madhu
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 382 - 405
  • [9] Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time
    Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
    不详
    不详
    CA, United States
    不详
    MA, United States
    不详
    Leibniz Int. Proc. Informatics, LIPIcs, 1868,
  • [10] Deterministic Dynamic Matching in O(1) Update Time
    Sayan Bhattacharya
    Deeparnab Chakrabarty
    Monika Henzinger
    Algorithmica, 2020, 82 : 1057 - 1080