Audio watermarking framework using multi-objective particle swarm optimization

被引:0
|
作者
机构
[1] Peng, Hong
[2] Zhang, Zulin
[3] Wang, Jun
[4] 4,Shi, Peng
来源
| 1600年 / ICIC International卷 / 09期
关键词
Conflicting objectives - Different attacks - Multi objective particle swarm optimization - Optimal parameter - Pareto optimal solutions - Single objective - Watermarking schemes - Weighted factors;
D O I
暂无
中图分类号
学科分类号
摘要
Aiming at the multi-objective essence of optimal audio watermarking problem, we propose a novel audio watermarking framework in this paper, which can optimally balance all conflicting objectives of the problem, fidelity and robustness against different attacks. In the proposed framework, a multi-objective particle swarm optimization technique based on fitness sharing is applied to search optimal watermarking parameters and Pareto-optimal solutions are used to express the optimal parameters found. In addition, the proposed framework has the following advantages: (i) it can avoid the difficulty of determining optimal weighted factors in the existing single-objective watermarking schemes; (ii) Pareto-optimal solutions can offer the flexibility to select optimal parameters for satisfying different application demands. © 2013 ICIC International.
引用
收藏
相关论文
共 50 条
  • [1] AUDIO WATERMARKING FRAMEWORK USING MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION
    Peng, Hong
    Zhang, Zulin
    Wang, Jun
    Shi, Peng
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2013, 9 (07): : 2789 - 2800
  • [2] Intelligent Audio Watermarking Algorithm using Multi-objective Particle Swarm Optimization
    Hemis, Mustapha
    Boudraa, Bachir
    Merazi-Meksen, Thouraya
    [J]. 2015 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 214 - +
  • [3] Multi-objective Particle Swarm Optimization Based Image Watermarking Scheme
    Fu, YongGang
    Wang, HuiRong
    Chen, Lizhen
    Jiang, Yunfei
    [J]. 2017 INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING (EITCE 2017), 2017, 128
  • [4] Robust optimization using multi-objective particle swarm optimization
    Ono S.
    Yoshitake Y.
    Nakayama S.
    [J]. Artificial Life and Robotics, 2009, 14 (2) : 174 - 177
  • [5] Robust Image Watermarking Using Support Vector Machine and Multi-objective Particle Swarm Optimization
    Jain, Kapil
    Kumar, Parmalik
    [J]. ADVANCES IN COMPUTING AND DATA SCIENCES, PT I, 2021, 1440 : 571 - 591
  • [6] A robust SVD-based image watermarking using a multi-objective particle swarm optimization
    Loukhaoukha, K.
    Nabti, M.
    Zebbiche, K.
    [J]. OPTO-ELECTRONICS REVIEW, 2014, 22 (01) : 45 - 54
  • [7] Geometric Particle Swarm Optimization for Multi-objective Optimization Using Decomposition
    Zapotecas-Martinez, Saul
    Moraglio, Alberto
    Aguirre, Hernan E.
    Tanaka, Kiyoshi
    [J]. GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 69 - 76
  • [8] Multi-Objective VAR Dispatch Using Particle Swarm Optimization
    Durairaj, S.
    Kannan, P. S.
    Devaraj, D.
    [J]. INTERNATIONAL JOURNAL OF EMERGING ELECTRIC POWER SYSTEMS, 2005, 4 (01):
  • [9] Virtual Photography Using Multi-Objective Particle Swarm Optimization
    Barry, William
    Ross, Brian J.
    [J]. GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 285 - 292
  • [10] Integrated Optimization by Multi-Objective Particle Swarm Optimization
    Kawarabayashi, Masaru
    Tsuchiya, Junichi
    Yasuda, Keiichiro
    [J]. IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2010, 5 (01) : 79 - 81