Geometric approach to Lyapunov analysis in Hamiltonian dynamics

被引:0
|
作者
Yamaguchi, Yoshiyuki Y. [1 ]
Iwai, Toshihiro [1 ]
机构
[1] Dept. of Appl. Math. and Physics, Kyoto University, Kyoto, 606-8501, Japan
关键词
Geodesic flow instability - Geodesic flow stability - Gram-Schmidt method - Hamiltonian equation of motion - Jacobi equation - Linearized equation of motion - Lyapunov vectors - Riemannian manifold;
D O I
10.1103/PhysRevE.64.066206
中图分类号
学科分类号
摘要
(Edited Abstract)
引用
收藏
页码:1 / 066206
相关论文
共 50 条
  • [1] Geometric approach to Lyapunov analysis in Hamiltonian dynamics
    Yamaguchi, YY
    Iwai, T
    PHYSICAL REVIEW E, 2001, 64 (06):
  • [2] Geometric approach to Lyapunov analysis in Hamiltonian dynamics (vol E 64, art no 066206, 2001)
    Yamaguchi, YY
    Iwai, T
    PHYSICAL REVIEW E, 2003, 68 (01):
  • [3] Geometric approach to Hamiltonian dynamics and statistical mechanics
    Casetti, L
    Pettini, M
    Cohen, EGD
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 337 (03): : 237 - 341
  • [4] GEOMETRIC APPROACH TO SETS OF ORDINARY DIFFERENTIAL EQUATIONS AND HAMILTONIAN DYNAMICS
    ESTABROOK, FB
    WAHLQUIST, HD
    SIAM REVIEW, 1975, 17 (02) : 201 - 220
  • [5] On the geometric formulation of Hamiltonian dynamics
    Calderon, Eran
    Horwitz, Lawrence
    Kupferman, Raz
    Shnider, Steven
    CHAOS, 2013, 23 (01)
  • [6] Global geometric indicator of chaos and Lyapunov exponents in Hamiltonian systems
    Ramasubramanian, K
    Sriram, MS
    PHYSICAL REVIEW E, 2001, 64 (04): : 6 - 462076
  • [7] Lyapunov Stability: A Geometric Algebra Approach
    H. Sira-Ramírez
    B. C. Gómez-León
    M. A. Aguilar-Orduña
    Advances in Applied Clifford Algebras, 2022, 32
  • [8] Lyapunov Stability: A Geometric Algebra Approach
    Sira-Ramirez, H.
    Gomez-Leon, B. C.
    Aguilar-Orduna, M. A.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (02)
  • [9] Quantization of the nonintegrable Hamiltonian by Lyapunov analysis
    Wang, Peijie
    Wu, Guozhen
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (02): : 1 - 022116
  • [10] Quantization of the nonintegrable Hamiltonian by Lyapunov analysis
    Wang, PJ
    Wu, GZ
    PHYSICAL REVIEW A, 2002, 66 (02): : 5