Prediction of the dissemination of health news on microblogging sites based on ample feature selection and support vector machine

被引:1
|
作者
Pei J. [1 ]
Shan P. [1 ]
机构
[1] School of Business, Jiangnan University, Wuxi
基金
中国国家自然科学基金;
关键词
Binary classification; Feature selection; News dissemination; Support vector machine (SVM);
D O I
10.18280/ria.330505
中图分类号
学科分类号
摘要
As a social networking service, microblogging sites provide an open platform facilitating the sharing and discussion of valuable news. This paper identifies the influencing factors of the dissemination of health news posts on Weibo, the leading microblogging site in China. The effects of these factors were tested with 863 news posts, all about public health issues. The content features, author features and a social feature of each post were evaluated, and collected into a set of ample, diverse features that characterize widely disseminated posts. In addition, the support vector machine (SVM) was adopted to differentiate between widely disseminated posts and normal posts, and compared with several classification methods through an experiment on microblog posts of health news. The results show that the SVM greatly outperformed the contrastive methods in predicting the dissemination trends of such news. The research results inform crisis managers about the public reaction towards specific news on public health issues, shedding important new light on news dissemination. © 2019 International Information and Engineering Technology Association. All rights reserved.
引用
收藏
页码:359 / 365
页数:6
相关论文
共 50 条
  • [1] Stock trend prediction based on fractal feature selection and support vector machine
    Ni, Li-Ping
    Ni, Zhi-Wei
    Gao, Ya-Zhuo
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (05) : 5569 - 5576
  • [2] Support vector machine tree based on feature selection
    Xu, Qinzhen
    Pei, Wenjiang
    Yang, Luxi
    He, Zhenya
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2006, 4232 : 856 - 863
  • [3] BLProt: prediction of bioluminescent proteins based on support vector machine and relieff feature selection
    Kandaswamy, Krishna Kumar
    Pugalenthi, Ganesan
    Hazrati, Mehrnaz Khodam
    Kalies, Kai-Uwe
    Martinetz, Thomas
    BMC BIOINFORMATICS, 2011, 12
  • [4] A reliable method for colorectal cancer prediction based on feature selection and support vector machine
    Dandan Zhao
    Hong Liu
    Yuanjie Zheng
    Yanlin He
    Dianjie Lu
    Chen Lyu
    Medical & Biological Engineering & Computing, 2019, 57 : 901 - 912
  • [5] A reliable method for colorectal cancer prediction based on feature selection and support vector machine
    Zhao, Dandan
    Liu, Hong
    Zheng, Yuanjie
    He, Yanlin
    Lu, Dianjie
    Lyu, Chen
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (04) : 901 - 912
  • [6] BLProt: prediction of bioluminescent proteins based on support vector machine and relieff feature selection
    Krishna Kumar Kandaswamy
    Ganesan Pugalenthi
    Mehrnaz Khodam Hazrati
    Kai-Uwe Kalies
    Thomas Martinetz
    BMC Bioinformatics, 12
  • [7] Feature Selection for Cancer Classification Based on Support Vector Machine
    Luo, Wei
    Wang, Lipo
    Sun, Jingjing
    PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL IV, 2009, : 422 - +
  • [8] Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm
    Ju, Zhe
    Wang, Shi-Yun
    JOURNAL OF THEORETICAL BIOLOGY, 2018, 457 : 6 - 13
  • [9] Prediction of human disease-associated phosphorylation sites with combined feature selection approach and support vector machine
    Xu, Xiaoyi
    Li, Ao
    Wang, Minghui
    IET SYSTEMS BIOLOGY, 2015, 9 (04) : 155 - 163
  • [10] Prediction of Human Disease-specific Phosphorylation Sites with Combined Feature Selection Approach and Support Vector Machine
    Xu, Xiaoyi
    Li, Ao
    Wang, Minghui
    2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2014,