The Cameron-Erdos conjecture

被引:0
|
作者
Sapozhenko, A.A. [1 ]
机构
[1] MGU im. M.V. Lomonosova, Moscow, Russia
关键词
Asymptotic stability - Mathematical operators - Theorem proving;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the paper is to prove the Cameron-Erdos hypothesis. The content of this hypothesis consists in the affirmation, that the whole number subset, free from sums, consists mainly from the S1(n) and S(n/3, n), families. The proof of this affirmation is presented in the paper.
引用
收藏
页码:749 / 752
相关论文
共 50 条
  • [1] The Cameron-Erdos conjecture
    Green, B
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 769 - 778
  • [2] The Cameron-Erdos conjecture
    Sapozhenko, AA
    DOKLADY MATHEMATICS, 2003, 68 (03) : 438 - 441
  • [3] The Cameron-Erdos conjecture
    Sapozhenko, Alexander A.
    DISCRETE MATHEMATICS, 2008, 308 (19) : 4361 - 4369
  • [4] A refinement of the Cameron-Erdos conjecture
    Alon, Noga
    Balogh, Jozsef
    Morris, Robert
    Samotij, Wojciech
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 44 - 72
  • [5] Cameron-Erdos modulo a prime
    Lev, VF
    Schoen, T
    FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (01) : 108 - 119
  • [6] Solution of the Cameron-Erdos problem for groups of prime order
    Sapozhenko, A. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (08) : 1435 - 1441
  • [7] A conjecture of Erdos
    Faudree, R
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (05): : 451 - 453
  • [8] ON A CONJECTURE OF ERDOS
    Felix, Adam Tyler
    Murty, M. Ram
    MATHEMATIKA, 2012, 58 (02) : 275 - 289
  • [9] On a conjecture of Erdos
    Pilehrood, T. Hessami
    Pilehrood, K. Hessami
    MATHEMATICAL NOTES, 2008, 83 (1-2) : 281 - 284
  • [10] On a conjecture of Erdos
    Chen, Yong-Gao
    Ding, Yuchen
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 971 - 974