3D printing with steel - Additive manufacturing of details, connections and members

被引:0
|
作者
Lange J. [1 ]
Feucht T. [1 ]
Erven M. [1 ]
Waldschmitt B. [1 ]
Oechsner M. [1 ]
Klein M. [2 ]
Schudlich A.-K. [2 ]
机构
[1] TU Darmstadt, Institut für Stahlbau und Werkstoffmechanik, Franziska-Braun-Straße 3, Darmstadt
[2] TU Darmstadt, Zentrum für Konstruktionswerkstoffe, Grafenstraße 2, Darmstadt
关键词
additive manufacturing; connections; detailing; in-situ manufacturing; materials; optimization; special structures; welding; welding and cutting;
D O I
10.1002/stab.202000082
中图分类号
学科分类号
摘要
3D printing with steel – additive manufacturing of details, connections and members. Fully automated production has arrived in the fabrication of structural steel. Although there are only very few companies that have steel components completely assembled by robots, the lack of skilled workers combined with continuous progress in the technology has led to a steady growth in this area. For example, one robot holds a base-plate or a stiffener to a column while the second one welds the seams. Welding robots can also use WAAM (Wire and Arc Additive Manufacturing) to produce details (stiffeners), connections, components (especially with unusual geometries) and entire structures. The wire electrode serves as printing material. This not only simplifies the logistics in the fabrication, since stiffeners or other connecting elements no longer have to be cut to size in advance and delivered to the assembly site. It also results in new shapes that require a new design process, in accordance with the flow of forces and in an optimised manner. This paper shows, besides a short overview of WAAM, some built examples from research projects of the department of steel construction of TU Darmstadt, new solutions for old problems resulting from the optimization, and the first bridge which was completely printed on site. © 2020, Ernst und Sohn. All rights reserved.
引用
收藏
页码:981 / 991
页数:10
相关论文
共 50 条
  • [1] 3D printing with steel Additive Manufacturing for connections and structures
    Lange, Joerg
    Feucht, Thilo
    Erven, Maren
    STEEL CONSTRUCTION-DESIGN AND RESEARCH, 2020, 13 (03): : 144 - 153
  • [2] 3D-Printing with Steel - Additive Manufacturing Connections and Structures
    Lange, Jörg
    Feucht, Thilo
    Erven, Maren
    ce/papers, 2021, 4 (2-4) : 2 - 7
  • [3] 3D printing in steel construction with the automated Wire Arc Additive Manufacturing
    Feldmann, Markus
    Kuehne, Ronny
    Citarelli, Sandro
    Reisgen, Uwe
    Sharma, Rahul
    Oster, Lukas
    STAHLBAU, 2019, 88 (03) : 203 - 213
  • [4] 3D printing in steel construction with the automated Wire Arc Additive Manufacturing
    Kühne, Ronny
    Feldmann, Markus
    Citarelli, Sandro
    Reisgen, Uwe
    Sharma, Rahul
    Oster, Lukas
    ce/papers, 2019, 3 (3-4) : 577 - 583
  • [5] An overview of additive manufacturing (3D printing) for microfabrication
    Bharat Bhushan
    Matt Caspers
    Microsystem Technologies, 2017, 23 : 1117 - 1124
  • [6] A review on 3D printing: An additive manufacturing technology
    Jadhav, Aniket
    Jadhav, Vijay S.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 2094 - 2099
  • [7] Additive manufacturing using 3D screen printing
    Dressler, M.
    Studnitzky, T.
    Kieback, B.
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2017, : 476 - 478
  • [8] Factors for increasing additive manufacturing (3D printing)
    Nurhayati, Ai
    Rivai, Ahmad
    Indrayani, Rina
    PROCEEDINGS OF MECHANICAL ENGINEERING RESEARCH DAY 2019 (MERD'19), 2019, : 12 - 13
  • [9] Polymers for 3D Printing and Customized Additive Manufacturing
    Ligon, Samuel Clark
    Liska, Robert
    Stampfl, Juergen
    Gurr, Matthias
    Muelhaupt, Rolf
    CHEMICAL REVIEWS, 2017, 117 (15) : 10212 - 10290
  • [10] Special Issue on: 3D Printing and Additive Manufacturing
    Paulo Davim, J.
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2019, 58 (2-3): : 103 - 103